已知向量a=(sinx/3,cosx/3),向量b=(cosx/3,根号3 cosx/30 ,函数f(x)=向量a*b
(1)将f(x)写成Asin(wx+)的形式,并求其图象对称中心的坐标;(2)如果△ABC的三边a,b,c满足b^2=ac,且边b所对的角为x,试求x的范围及此时函数f(...
(1)将f(x)写成Asin(wx+)的形式,并求其图象对称中心的坐标;
(2)如果△ABC 的三边a,b,c 满足b^2=ac ,且边b 所对的角为x ,试求x 的范围及此时函数f(x) 的值域. 展开
(2)如果△ABC 的三边a,b,c 满足b^2=ac ,且边b 所对的角为x ,试求x 的范围及此时函数f(x) 的值域. 展开
2个回答
展开全部
1) f(x)=a*b=sin(x/3)*cos(x/3)+cos(x/3)*√3cos(x/3)
=2cos(x/3)[1/2sin(x/3)+√3/2cos(x/3)]
=2cos(x/3)sin(x/3+π/3)
=sin(x/3+x/3+π/3)-sin(x/3-x/3-π/3)
=sin(2x/3+π/3)+sin(π/3)
=sin(2x/3+π/3)+√3/2
图像对称中心为 2x/3+π/3=kπ+π/2
解得x=3kπ/2+π/4
2) △ABC 的三边a,b,c,b所对应角为x,则0<x<π
由b^2=ac及余弦定理得
b^2=a^2+c^2-2ac*cosB
ac=a^2+c^2-2ac*cosx
cosx=(a^2+c^2-ac)/2ac
≥(2ac-ac)/2ac
=1/2
即cosx≥1/2,∴0<x≤π/3
f(x)=sin(2x/3+π/3)+√3/2
π/3<2x/3+π/3≤5π/9
∵5π/9>π/2, ∴sin(2x/3+π/3)在定义域内的最大值为sin(π/2)=1
又sin(5π/9)=cos(π/2-5π/9)=cos(π/18)>cos(π/6)=cos(π/2-π/3)=sin(π/3)
∴sin(2x/3+π/3)在定义域内的最小值为sin(π/3)=√3/2
∴f(x)=sin(2x/3+π/3)+√3/2的值域为[√3,1+√3/2]
=2cos(x/3)[1/2sin(x/3)+√3/2cos(x/3)]
=2cos(x/3)sin(x/3+π/3)
=sin(x/3+x/3+π/3)-sin(x/3-x/3-π/3)
=sin(2x/3+π/3)+sin(π/3)
=sin(2x/3+π/3)+√3/2
图像对称中心为 2x/3+π/3=kπ+π/2
解得x=3kπ/2+π/4
2) △ABC 的三边a,b,c,b所对应角为x,则0<x<π
由b^2=ac及余弦定理得
b^2=a^2+c^2-2ac*cosB
ac=a^2+c^2-2ac*cosx
cosx=(a^2+c^2-ac)/2ac
≥(2ac-ac)/2ac
=1/2
即cosx≥1/2,∴0<x≤π/3
f(x)=sin(2x/3+π/3)+√3/2
π/3<2x/3+π/3≤5π/9
∵5π/9>π/2, ∴sin(2x/3+π/3)在定义域内的最大值为sin(π/2)=1
又sin(5π/9)=cos(π/2-5π/9)=cos(π/18)>cos(π/6)=cos(π/2-π/3)=sin(π/3)
∴sin(2x/3+π/3)在定义域内的最小值为sin(π/3)=√3/2
∴f(x)=sin(2x/3+π/3)+√3/2的值域为[√3,1+√3/2]
追问
=2cos(x/3)sin(x/3+π/3)
=sin(x/3+x/3+π/3)-sin(x/3-x/3-π/3)
怎么算
追答
三角公式的积化和差公式:2cosαsinβ=sin(α+β)-sin(α-β)
展开全部
1)
f(x)=a*b=sin(x/3)*cos(x/3)+cos(x/3)*√3cos(x/3)
=2cos(x/3)[1/2sin(x/3)+√3/2cos(x/3)]
=2cos(x/3)sin(x/3+π/3)
=sin(x/3+x/3+π/3)-sin(x/3-x/3-π/3)
=sin(2x/3+π/3)+sin(π/3)
=sin(2x/3+π/3)+√3/2
图像对称中心为
2x/3+π/3=kπ+π/2
解得x=3kπ/2+π/4
2)
△ABC
的三边a,b,c,b所对应角为x,则0<x<π
由b^2=ac及余弦定理得
b^2=a^2+c^2-2ac*cosB
ac=a^2+c^2-2ac*cosx
cosx=(a^2+c^2-ac)/2ac
≥(2ac-ac)/2ac
=1/2
即cosx≥1/2,∴0<x≤π/3
f(x)=sin(2x/3+π/3)+√3/2
π/3<2x/3+π/3≤5π/9
∵5π/9>π/2,
∴sin(2x/3+π/3)在定义域内的最大值为sin(π/2)=1
又sin(5π/9)=cos(π/2-5π/9)=cos(π/18)>cos(π/6)=cos(π/2-π/3)=sin(π/3)
∴sin(2x/3+π/3)在定义域内的最小值为sin(π/3)=√3/2
∴f(x)=sin(2x/3+π/3)+√3/2的值域为[√3,1+√3/2]
f(x)=a*b=sin(x/3)*cos(x/3)+cos(x/3)*√3cos(x/3)
=2cos(x/3)[1/2sin(x/3)+√3/2cos(x/3)]
=2cos(x/3)sin(x/3+π/3)
=sin(x/3+x/3+π/3)-sin(x/3-x/3-π/3)
=sin(2x/3+π/3)+sin(π/3)
=sin(2x/3+π/3)+√3/2
图像对称中心为
2x/3+π/3=kπ+π/2
解得x=3kπ/2+π/4
2)
△ABC
的三边a,b,c,b所对应角为x,则0<x<π
由b^2=ac及余弦定理得
b^2=a^2+c^2-2ac*cosB
ac=a^2+c^2-2ac*cosx
cosx=(a^2+c^2-ac)/2ac
≥(2ac-ac)/2ac
=1/2
即cosx≥1/2,∴0<x≤π/3
f(x)=sin(2x/3+π/3)+√3/2
π/3<2x/3+π/3≤5π/9
∵5π/9>π/2,
∴sin(2x/3+π/3)在定义域内的最大值为sin(π/2)=1
又sin(5π/9)=cos(π/2-5π/9)=cos(π/18)>cos(π/6)=cos(π/2-π/3)=sin(π/3)
∴sin(2x/3+π/3)在定义域内的最小值为sin(π/3)=√3/2
∴f(x)=sin(2x/3+π/3)+√3/2的值域为[√3,1+√3/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询