过圆外一点p(x0,y0)引圆x^2+y^2=r^2的两条切线的切点分别为A、B两点,求直线AB的方程。
过圆外一点p(x0,y0)引圆x^2+y^2=r^2的两条切线的切点分别为A、B两点,求直线AB的方程。解:连接圆心O和P,则以OP为直径的圆的方程是x(x-xo)+y(...
过圆外一点p(x0,y0)引圆x^2+y^2=r^2的两条切线的切点分别为A、B两点,求直线AB的方程。
解:连接圆心O和P,则以OP为直径的圆的方程是x(x-xo)+y(y-yo)=0
即x^2+y^2-x*xo-y*yo=0
点A,B在此圆上,又A,B在圆x^2+y^2=r^2,所以AB的直线方程就是二个圆的方程相减所得:
即:xox+yoy=r^2
我想问下,这里怎么知道点A、B会在以OP为直径的圆上呢 展开
解:连接圆心O和P,则以OP为直径的圆的方程是x(x-xo)+y(y-yo)=0
即x^2+y^2-x*xo-y*yo=0
点A,B在此圆上,又A,B在圆x^2+y^2=r^2,所以AB的直线方程就是二个圆的方程相减所得:
即:xox+yoy=r^2
我想问下,这里怎么知道点A、B会在以OP为直径的圆上呢 展开
5个回答
展开全部
1、因为∠OAP=∠OBP=90°,则:O、A、P、B四点共圆,且因∠OAP=∠OBP=90°,则此圆的直径就是OP。
2、【解法二】
设A(x1,y1)、B(x2,y2),则:
以A为切点的圆的切线方程是:x1x+y1y=r²
以B为切点的圆的切线方程是:x2x+y2y=r²
又此两直线的交点是P(x0,y0),则点P在这两直线上,得:
x0x1+y0y1=r² 且 x0x2+y0y2=r²
现在要求的是过A(x1,y1)、B(x2,y2)的直线方程【即求满足以(x1,y1)、(x2,y2)为解的方程】,则此直线方程就是:
x0x+y0y=r² =====>>>>>> 【此方程的解就是(x1,y1)、(x2,y2)】
2、【解法二】
设A(x1,y1)、B(x2,y2),则:
以A为切点的圆的切线方程是:x1x+y1y=r²
以B为切点的圆的切线方程是:x2x+y2y=r²
又此两直线的交点是P(x0,y0),则点P在这两直线上,得:
x0x1+y0y1=r² 且 x0x2+y0y2=r²
现在要求的是过A(x1,y1)、B(x2,y2)的直线方程【即求满足以(x1,y1)、(x2,y2)为解的方程】,则此直线方程就是:
x0x+y0y=r² =====>>>>>> 【此方程的解就是(x1,y1)、(x2,y2)】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
角OAP=角OBP=90度
所以
A,P,B,O四点共圆,且PO为直径(因为所对圆周角为90度).
所以
A,P,B,O四点共圆,且PO为直径(因为所对圆周角为90度).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为OA⊥PA, OB⊥PA 也就是说∠OAP=∠OBP=90°
所以点OAPB共圆,且OP为直径
所以点OAPB共圆,且OP为直径
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
都说A和B是切点了,那肯定在圆上啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询