计算定积分 谢谢
3个回答
展开全部
因为xsinx/(2+cos^2x)是偶函数,所以原式=2∫(0,π) xsinx/(2+cos^2x)dx
令t=x-π/2,则x=t+π/2
原式=2∫(-π/2,π/2) (t+π/2)cost/(2+sin^2t)dt
=2∫(-π/2,π/2) tcost/(2+sin^2t)dt+π∫(-π/2,π/2) cost/(2+sin^2t)dt
因为tcost/(2+sin^2t)是奇函数,所以∫(-π/2,π/2) tcost/(2+sin^2t)dt=0
因为cost/(2+sin^2t)是偶函数,
所以∫(-π/2,π/2) cost/(2+sin^2t)dt=2∫(0,π/2) cost/(2+sin^2t)dt
所以原式=2π∫(0,π/2) cost/(2+sin^2t)dt
=2π∫(0,π/2) d(sint)/(2+sin^2t)
=2π*(1/√2)*arctan[(sint)/√2]|(0,π/2)
=√2π*arctan(√2/2)
令t=x-π/2,则x=t+π/2
原式=2∫(-π/2,π/2) (t+π/2)cost/(2+sin^2t)dt
=2∫(-π/2,π/2) tcost/(2+sin^2t)dt+π∫(-π/2,π/2) cost/(2+sin^2t)dt
因为tcost/(2+sin^2t)是奇函数,所以∫(-π/2,π/2) tcost/(2+sin^2t)dt=0
因为cost/(2+sin^2t)是偶函数,
所以∫(-π/2,π/2) cost/(2+sin^2t)dt=2∫(0,π/2) cost/(2+sin^2t)dt
所以原式=2π∫(0,π/2) cost/(2+sin^2t)dt
=2π∫(0,π/2) d(sint)/(2+sin^2t)
=2π*(1/√2)*arctan[(sint)/√2]|(0,π/2)
=√2π*arctan(√2/2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询