微积分微积分微积分
1个回答
展开全部
1、原式=(1/2)*∫(2x+3)^2 d(2x+3)
=(1/6)*(2x+3)^3+C,其中C是任意常数
2、原式=(1/4)*∫(0,π/2) (2sin^2x)^2 dx
=(1/4)*∫(0,π/2) (1-cos2x)^2 dx
=(1/4)*∫(0,π/2) (1-2cos2x+cos^2(2x)) dx
=(1/8)*∫(0,π/2) (2-4cos2x+1+cos4x) dx
=(1/8)*[3x-2sin2x+(1/4)*sin4x]|(0,π/2)
=3π/16
=(1/6)*(2x+3)^3+C,其中C是任意常数
2、原式=(1/4)*∫(0,π/2) (2sin^2x)^2 dx
=(1/4)*∫(0,π/2) (1-cos2x)^2 dx
=(1/4)*∫(0,π/2) (1-2cos2x+cos^2(2x)) dx
=(1/8)*∫(0,π/2) (2-4cos2x+1+cos4x) dx
=(1/8)*[3x-2sin2x+(1/4)*sin4x]|(0,π/2)
=3π/16
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询