函数的最值点一定是极值点,这句话对吗!
6个回答
展开全部
错误。
如y=x^2在[1,2]上的最小值1,最大值4,都不是极值!
在数学分析中,函数的最大值和最小值(最大值和最小值)被统称为极值(极数),是给定范围内的函数的最大值和最小值(本地 或相对极值)或函数的整个定义域(全局或绝对极值)。皮埃尔·费马特(Pierre de Fermat)是第一位发现函数的最大值和最小值数学家之一。
扩展资料:
寻求函数整个定义域上的最大值和最小值是数学优化的目标。如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。
此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。因此,寻找整个定义域上最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小的)一个。
费马定理可以发现局部极值的微分函数,它表明它们必须发生在关键点。可以通过使用一阶导数测试,二阶导数测试或高阶导数测试来区分临界点是局部最大值还是局部最小值,给出足够的可区分性。
展开全部
错!
你可看些具体例子,
帮助自己先从直观上
认识到你存在
概念上的误区!
因为最值有可能
在函数定义域的
端点处取得,
这个值绝对
不可能是极值,
因它不符合极值
的定义!
如y=x^2在[1,2]上
的最小值1,最大值4
都不是极值!
你可看些具体例子,
帮助自己先从直观上
认识到你存在
概念上的误区!
因为最值有可能
在函数定义域的
端点处取得,
这个值绝对
不可能是极值,
因它不符合极值
的定义!
如y=x^2在[1,2]上
的最小值1,最大值4
都不是极值!
追答
能讲出不点采纳的理由吗?请了!
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不对,在端点处的最值点不是极值点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
错,最值点有特定条件,不是极值点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
极值是:使函数单调性发生改变的点
最值是:定义域的端点值和极值之间比较,哪个点的函数值大哪个点就是最值
最值是:定义域的端点值和极值之间比较,哪个点的函数值大哪个点就是最值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询