
已知数列an的前n项为Sn,且满足Sn=S(n-1)/2S(n-1)+1(n≥2),a1=2
2个回答
展开全部
证明:
(1)易知Sn≠0,所以:
1/Sn = 1/S(n-1) + 2
1/Sn - 1/S(n-1) = 2,且1/S1 = 1/2
∴是等差数列
(2)1/Sn = 1/2 + 2(n-1)
Sn = 2/(4n-3)
S(n-1) = 2/(4n-7)
an = 2/(4n-3) - 2/(4n-7) (n>=2)
(1)易知Sn≠0,所以:
1/Sn = 1/S(n-1) + 2
1/Sn - 1/S(n-1) = 2,且1/S1 = 1/2
∴是等差数列
(2)1/Sn = 1/2 + 2(n-1)
Sn = 2/(4n-3)
S(n-1) = 2/(4n-7)
an = 2/(4n-3) - 2/(4n-7) (n>=2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询