1个回答
展开全部
希望我的分析对你有所帮助
一、行程问题
在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。也叫行程问题。
行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:
距离=速度×时间 速度=距离÷时间 时间=距离÷速度
按运动方向,行程问题可以分成三类:
1、 相向运动问题(相遇问题)
2、 同向运动问题(追及问题)
3、 背向运动问题(相离问题)
1、 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。
2 8 ÷ ( 16-9 ) =4 (小时)
2、 甲乙两人在相距12千米的AB两地同时出发,同向而行。甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。几小时后乙能追上甲?
12÷(4×3-4)=1.5小时
3、 一个通讯员骑摩托车追赶前面部队乘的汽车。汽车每小时行48千米,摩托车每小时行60千米。通讯员出发后2小时追上汽车。通讯员出发的时候和部队乘的汽车相距多少千米?
要求距离差,需要知道速度差和追及时间。
距离差=速度差×追及时间
(60-48)×2=24千米
4、 一个人从甲村步行去乙村 ,每分钟行80米。他出发以后25分钟,另一个人骑自行车追他,10分钟追上。骑自行车的人每分钟行多少米?
要求“骑自行车的人每分钟行多少米”,需要知道“两人的速度差”;要求“两人的速度差”需要绝档知道距离差和追及时间
80×25÷10+80=280米
5、 甲乙两车从AB两地的中点同时相背而行。甲车以每小时40千米的速度行驶,到达A地后又以原来的速度立即返回,甲车到达A地时,乙车离B地还有40千米。乙车加快速度继续行驶,到达B地后也立即返回,又用了7.5小时回到中点,这时甲车离中点还有20千米。乙车加快速度后,每小时行多少千米?
乙车在7.5小时内行驶了(40×7.5+40+20)千米的路程,这样可以求得乙车加快后的速度。
(40×7.5+40+20)÷7.5=48(千米)
二、和差问题
和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再衡宏运求另一个数。
解题规律:(和+差)÷2 = 大数 大数-差=小数
(和-差)÷2=小数 和-小数= 大数
1、 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)
2、两名学生重量之和为69千克,其中一个比另一个重17千克,较重的学生多少千克?
( 69+ 17 )÷ 2=43(千克)
3、一架照相机和这的皮套共100元,这架照相机比皮套贵90元,皮套多少元?
( 100-90)÷ 2=5(元)
4、甲的年龄数字颠倒过来恰好是乙的年龄,二人年龄之和为99岁,甲比乙大9岁,求甲的年龄。
( 99+ 9 )÷ 2=54(岁)
5、王强同学期末考试成绩如下:语文和数学平均成绩是94分,数学和外语平均成绩是88分,外语和语文平均成绩是86分,王新同学语文、数学、外语各得多少分?
成绩总和:(94+88+86)÷2=268分
语文:268-88×2=92分
数学:268-86×2=96分
外语: 268-94×2=80分咐梁
一、行程问题
在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。也叫行程问题。
行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:
距离=速度×时间 速度=距离÷时间 时间=距离÷速度
按运动方向,行程问题可以分成三类:
1、 相向运动问题(相遇问题)
2、 同向运动问题(追及问题)
3、 背向运动问题(相离问题)
1、 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。
2 8 ÷ ( 16-9 ) =4 (小时)
2、 甲乙两人在相距12千米的AB两地同时出发,同向而行。甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。几小时后乙能追上甲?
12÷(4×3-4)=1.5小时
3、 一个通讯员骑摩托车追赶前面部队乘的汽车。汽车每小时行48千米,摩托车每小时行60千米。通讯员出发后2小时追上汽车。通讯员出发的时候和部队乘的汽车相距多少千米?
要求距离差,需要知道速度差和追及时间。
距离差=速度差×追及时间
(60-48)×2=24千米
4、 一个人从甲村步行去乙村 ,每分钟行80米。他出发以后25分钟,另一个人骑自行车追他,10分钟追上。骑自行车的人每分钟行多少米?
要求“骑自行车的人每分钟行多少米”,需要知道“两人的速度差”;要求“两人的速度差”需要绝档知道距离差和追及时间
80×25÷10+80=280米
5、 甲乙两车从AB两地的中点同时相背而行。甲车以每小时40千米的速度行驶,到达A地后又以原来的速度立即返回,甲车到达A地时,乙车离B地还有40千米。乙车加快速度继续行驶,到达B地后也立即返回,又用了7.5小时回到中点,这时甲车离中点还有20千米。乙车加快速度后,每小时行多少千米?
乙车在7.5小时内行驶了(40×7.5+40+20)千米的路程,这样可以求得乙车加快后的速度。
(40×7.5+40+20)÷7.5=48(千米)
二、和差问题
和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再衡宏运求另一个数。
解题规律:(和+差)÷2 = 大数 大数-差=小数
(和-差)÷2=小数 和-小数= 大数
1、 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)
2、两名学生重量之和为69千克,其中一个比另一个重17千克,较重的学生多少千克?
( 69+ 17 )÷ 2=43(千克)
3、一架照相机和这的皮套共100元,这架照相机比皮套贵90元,皮套多少元?
( 100-90)÷ 2=5(元)
4、甲的年龄数字颠倒过来恰好是乙的年龄,二人年龄之和为99岁,甲比乙大9岁,求甲的年龄。
( 99+ 9 )÷ 2=54(岁)
5、王强同学期末考试成绩如下:语文和数学平均成绩是94分,数学和外语平均成绩是88分,外语和语文平均成绩是86分,王新同学语文、数学、外语各得多少分?
成绩总和:(94+88+86)÷2=268分
语文:268-88×2=92分
数学:268-86×2=96分
外语: 268-94×2=80分咐梁
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询