已知1/3≤a≤1,若函数f(x)=ax^2-2x+1,在区间[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a)

求g(a)的函数表达式... 求g(a)的函数表达式 展开
满雪华音
2011-08-20 · 超过25用户采纳过TA的回答
知道答主
回答量:66
采纳率:0%
帮助的人:57.2万
展开全部
因为1/3≤a≤1 所以f(x)=ax^2-2x+1=a(x-1/a)^2+1-1/a
所以当x=1/a时 f(x)最小 而x的取值正好在1/a的区间中 所以最小值为N(a)=1-1/a
因为f(1)=a-1 f(3)=9a-5 f(1)-f(3)=4-8a
所以当 1/3≤a≤1/2 时 最大值为M(a)=a-1
所以当 1/2≤a≤1 时 最大值为M(a)=9a-5
所以当 1/3≤a≤1/2 时 g(a)=M(a)-N(a)=a+1/a-2
所以当 1/2≤a≤1 时 g(a)=M(a)-N(a)=9a+1/a-6
zhzhouy
2011-08-19 · TA获得超过3363个赞
知道小有建树答主
回答量:874
采纳率:0%
帮助的人:1104万
展开全部
f(x)=a(x-1/a)^2-1/a+1,其对称轴是x=1/a,而1/3≤a≤1,有1≤1/a≤3。所以在区间[1,3]上,函数能取到最小值-1/a+1,即当x=1/a时取得,即有N(a)=-1/a+1,而最大值M(a)则在端点1或3处取得,f(1)=a-1,f(3)=9a-5。讨论:
当f(1)≥f(3)时,即a-1≥9a-5,a≤1/2,亦即1/3≤a≤1/2时,M(a)=f(1)=a-1,此时,g(a)=M(a)-N(a)=a-1-(-1/a+1)=a+1/a-2;
当f(1)<f(3)时,即a>1/2,亦即1/2<a≤1时,M(a)=f(3)=9a-5,此时g(a)=9a+1/a-6.
综上所述,当1/3≤a≤1/2时,g(a)=a+1/a-2;当1/2<a≤1时,g(a)=9a+1/a-6.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式