如图 在平面直角坐标系中,四边形ABCD A(0,0),B(7,0),C(9,5),D(2,7),求此四边形的面积
2个回答
展开全部
解:1)设C在x轴射影为E(9,0)、D在x轴射影为F(2,0),
S四边形ABCD=S梯形CDFE-S△CEB+S△AFD=
1/2(CE+DF)*EF-1/2BE*CE+1/2AF*DF
=1/2(5+7)*7-1/2*2*5+1/2*2*7=44;
2)①设P在x轴上,坐标P(x,0),
则S△PBC=BP*CE/2=|x-7|*5/2=50,解得x1=-13,或x2=27,
所以P坐标为(-13,0)或(27,0);
设BC方程为y=kx+b,把B(7,0)C(9,5)代入求得b=-14.5,即BC交y轴于M(0,-14.5),
②设点P在y轴上,P坐标为(0,y),
则S△PBC=S△PCM-S△PBM=PM*AE/2-PM*AB/2=PM*(AE-AB)/2
=|y+14.5|*|9-7|/2=50,解得y1=-64.5、y2=35.5;
所以P的坐标为P(0,-64.5)或(0,35.5);解毕。
S四边形ABCD=S梯形CDFE-S△CEB+S△AFD=
1/2(CE+DF)*EF-1/2BE*CE+1/2AF*DF
=1/2(5+7)*7-1/2*2*5+1/2*2*7=44;
2)①设P在x轴上,坐标P(x,0),
则S△PBC=BP*CE/2=|x-7|*5/2=50,解得x1=-13,或x2=27,
所以P坐标为(-13,0)或(27,0);
设BC方程为y=kx+b,把B(7,0)C(9,5)代入求得b=-14.5,即BC交y轴于M(0,-14.5),
②设点P在y轴上,P坐标为(0,y),
则S△PBC=S△PCM-S△PBM=PM*AE/2-PM*AB/2=PM*(AE-AB)/2
=|y+14.5|*|9-7|/2=50,解得y1=-64.5、y2=35.5;
所以P的坐标为P(0,-64.5)或(0,35.5);解毕。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询