已知三角形ABC的三个顶点都在圆O上,AB=AC,D是BC上一点,E是直线AD与圆的交点,如图1所示
(1)试说明AB^2=ADxAE(2)当D为BC延长线上一点时,如图2,第(1)题的结论还成立吗?说明理由。...
(1)试说明AB^2=ADxAE
(2)当D为BC延长线上一点时,如图2,第(1)题的结论还成立吗?说明理由。 展开
(2)当D为BC延长线上一点时,如图2,第(1)题的结论还成立吗?说明理由。 展开
展开全部
1)联结BE
∠ABD=∠C(AB=AC)
=∠AEB(都是弧AB所对的圆周角)
∠BAD=∠EAB
所以△ABD相似于△AEB
AB/AE=AD/AB,即AB^2=AD*AE
2)成立
联结BE,CE
∠ABD=180°-∠AEC(圆内接四边形对角互补)=∠CED
∠D=∠D
所以△ABD相似于△CED
AB/CE=AD/CD,即AB/AD=CE/CD
∠ECD=∠EAB(△ABD相似于△CEB)
∠DEC=∠ABC(已证)
=∠ACB(AB=AC)
=∠AEB(都是弧AB所对的圆周角)
所以△ABE相似于△CDE
AB/CD=AE/CE,即AE/AB=CE/CD
所以AB/AD=CE/CD=AE/AB,即AB^2=AD*AE
∠ABD=∠C(AB=AC)
=∠AEB(都是弧AB所对的圆周角)
∠BAD=∠EAB
所以△ABD相似于△AEB
AB/AE=AD/AB,即AB^2=AD*AE
2)成立
联结BE,CE
∠ABD=180°-∠AEC(圆内接四边形对角互补)=∠CED
∠D=∠D
所以△ABD相似于△CED
AB/CE=AD/CD,即AB/AD=CE/CD
∠ECD=∠EAB(△ABD相似于△CEB)
∠DEC=∠ABC(已证)
=∠ACB(AB=AC)
=∠AEB(都是弧AB所对的圆周角)
所以△ABE相似于△CDE
AB/CD=AE/CE,即AE/AB=CE/CD
所以AB/AD=CE/CD=AE/AB,即AB^2=AD*AE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询