已知0<β<π/4<α<3/4π,COS(π/4-α)=3/5,SIN(3/4π+β)=5/13 求COS(α-β)的值
展开全部
π/4<α<3π/4
-3π/4<-α<-π/4
所以-π/2<π/4-α<0
cos(π/4-α)=3/5
所以sin(π/4-α)=-4/5
0<β<π/4
3π/4<3π/4+β<π
sin(3π/4+β)=5/13
所以cos (3π/4+β)=-12/13
因为(π/4-α)+(3π/4+β)=π-(α-β)
所以cos(α-β)=-cos[(π/4-α)+(3π/4+β)]
=-[cos(π/4-α)cos (3π/4+β)-sin(π/4-α)sin(3π/4+β)
=-[(3/5)(-12/13)-(4/5)(5/13)]
=56/65
-3π/4<-α<-π/4
所以-π/2<π/4-α<0
cos(π/4-α)=3/5
所以sin(π/4-α)=-4/5
0<β<π/4
3π/4<3π/4+β<π
sin(3π/4+β)=5/13
所以cos (3π/4+β)=-12/13
因为(π/4-α)+(3π/4+β)=π-(α-β)
所以cos(α-β)=-cos[(π/4-α)+(3π/4+β)]
=-[cos(π/4-α)cos (3π/4+β)-sin(π/4-α)sin(3π/4+β)
=-[(3/5)(-12/13)-(4/5)(5/13)]
=56/65
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询