线性代数问题,急
已知二次型f(x1,x2,x3)=x^TAx在正交变换x=Qy下的标准型为y1^2+y2^2,且Q的第三列为(√2/2,0,√2/2)^T.求矩阵A答案给的是因为二次型的...
已知二次型f(x1,x2,x3)=x^TAx在正交变换x=Qy下的标准型为y1^2+y2^2,且Q的第三列为(√2/2,0,√2/2)^T.
求矩阵A
答案给的是因为二次型的标准型为y1^2+y2^2,所以A的特征值为1,1,0.又因为Q的第3列是(√2/2,0,√2/2)^T,说明a3=(1,0,1)^T.是矩阵A关于特征值0的特征向量。
我的问题是a3=(1,0,1)^T为什么是矩阵A关于特征值0的特征向量,a3=(1,0,1)^T咋求的? 展开
求矩阵A
答案给的是因为二次型的标准型为y1^2+y2^2,所以A的特征值为1,1,0.又因为Q的第3列是(√2/2,0,√2/2)^T,说明a3=(1,0,1)^T.是矩阵A关于特征值0的特征向量。
我的问题是a3=(1,0,1)^T为什么是矩阵A关于特征值0的特征向量,a3=(1,0,1)^T咋求的? 展开
2个回答
展开全部
追问
第3列 (√2/2,0,√2/2)^T 是 属于特征值0的特征向量
,那为什么不是1的特征向量
追答
不是
在正交变换x=Qy下的标准型为y1^2+y2^2 +0y3^2
特征值的顺序是 1,1,0
对应的特征向量即Q的列向量, 是按特征值对应的
来自:求助得到的回答
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |