数学公式有哪些? 5

了理了理了
2011-08-23 · TA获得超过368个赞
知道答主
回答量:10
采纳率:0%
帮助的人:15.5万
展开全部
常见公式
  1 过两点有且只有一条直线 (直线宽度等于点的直径)   2 两点之间直线段最短   3 同角或等角的补角相等   4 同角或等角的余角相等   5 过一点有且只有一条直线和已知直线垂直   6 直线外一点与直线上各点连接的所有线段中,垂线段最短   7 平行公理 平面内,经过直线外一点 ,有且只有一条直线与这条直线平行   8 如果两条直线都和第三条直线平行,这两条直线也互相平行   9 同位角相等,两直线平行   10 内错角相等,两直线平行   11 同旁内角互补,两直线平行   12两直线平行,同位角相等   13 两直线平行,内错角相等   14 两直线平行,同旁内角互补   15 定理 三角形任意两边的和大于第三边   16 推论 三角形任意两边的差小于第三边   17 三角形内角和定理 三角形三个内角的和等于180°   18 推论1 直角三角形的两个锐角互余   19 推论2 三角形的一个外角等于和它不相邻的两个内角的和   20 推论3 三角形的一个外角大于任何一个和它不相邻的内角   21 全等三角形的对应边、对应角相等   22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等   23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等   24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等   25 边边边公理(SSS) 有三边对应相等的两个三角形全等   26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等   27 定理1 在角的平分线上的点到这个角的两边的距离相等   28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上   29 角的平分线是到角的两边距离相等的所有点的集合   30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)   31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边   32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合   33 推论3 等边三角形的各角都相等,并且每一个角都等于60°   34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)   35 推论1 三个角都相等的三角形是等边三角形   36 推论 2 有一个角等于60°的等腰三角形是等边三角形   37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半   38 直角三角形斜边上的中线等于斜边上的一半   39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等   40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上   41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合   42 定理1 关于某条直线对称的两个图形是全等形   43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线   44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上   45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称   46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2   47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形   48 定理 四边形的内角和等于360°   49 四边形的外角和等于360°   50 多边形内角和定理 n边形的内角的和等于(n-2)×180°   51 推论 任意多边的外角和等于360°   52 平行四边形性质定理1 平行四边形的对角相等   53 平行四边形性质定理2 平行四边形的对边相等且互相平行   54 推论 夹在两条平行线间的平行线段相等   55 平行四边形性质定理3平行四边形的对角线互相平分   56 平行四边形判定定理1两组对角分别相等的四边形是平行四边形   57 平行四边形判定定理2两组对边分别相等的四边形是平行四边形   58 平行四边形判定定理3对角线互相平分的四边形是平行四边形   59 平行四边形判定定理4一组对边平行相等的四边形是平行四边形   平行四边形判定定理5两组对边分别平行的四边形是平行四边形   60 矩形性质定理1 矩形的四个角都是直角   61 矩形性质定理2 矩形的对角线相等   62 矩形判定定理1 有三个角是直角的四边形是矩形   63 矩形判定定理2 对角线相等的平行四边形是矩形   矩形判定定理3 有一个角是直角的平行四边形是矩形   64 菱形性质定理1 菱形的四条边都相等   65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角   66 菱形面积=对角线乘积的一半,即S=(a×b)÷2   67 菱形判定定理1 四边都相等的四边形是菱形   68 菱形判定定理2 对角线互相垂直的平行四边形是菱形   菱形判定定理3 有一组邻边相等的平行四边形是菱形   69 正方形性质定理1 正方形的四个角都是直角,四条边都相等   70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角   71 定理1 关于中心对称的两个图形是全等的   72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分   73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一   点平分,那么这两个图形关于这一点对称   74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等   75 等腰梯形的两条对角线相等   76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形   77对角线相等的梯形是等腰梯形 两腰相等的梯形是等腰梯形   78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段   相等,那么在其他直线上截得的线段也相等   79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰   80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第   三边   81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它   的一半   82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的   一半 L=(a+b)÷2 S=L×h   83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc   如果ad=bc,那么a:b=c:d   84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d   85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么   (a+c+…+m)/(b+d+…+n)=a/b   86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应   线段成比例   87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例   88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边   89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例   90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似   91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)   92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似   93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)   94 判定定理3 三边对应成比例,两三角形相似(SSS)   95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三   角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似   96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平   分线的比都等于相似比   97 性质定理2 相似三角形周长的比等于相似比   98 性质定理3 相似三角形面积的比等于相似比的平方   99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等   于它的余角的正弦值   100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等   于它的余角的正切值   101 圆是定点的距离等于定长的点的集合   102 圆的内部可以看作是圆心的距离小于半径的点的集合   103 圆的外部可以看作是圆心的距离大于半径的点的集合   104 同圆或等圆的半径相等   105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半   径的圆   106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直   平分线   107 到已知角的两边距离相等的点的轨迹,是这个角的平分线   108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距   离相等的一条直线   109 定理 不在同一直线上的三点确定一个圆。   110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧   111 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧   ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧   ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧   112 推论2 圆的两条平行弦所夹的弧相等   113 圆是以圆心为对称中心的中心对称图形   114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等   115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等   116 定理 一条弧所对的圆周角等于它所对的圆心角的一半   117 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等   118 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径   119 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形   120 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角   121 ①直线L和⊙O相交 d<r   ②直线L和⊙O相切 d=r   ③直线L和⊙O相离 d>r   122 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线   123 切线的性质定理 圆的切线垂直于经过切点的半径   124 推论1 经过圆心且垂直于切线的直线必经过切点   125 推论2 经过切点且垂直于切线的直线必经过圆心   126 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角   127 圆的外切四边形的两组对边的和相等   128 弦切角定理 弦切角等于它所夹的弧对的圆周角   129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等   130 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等   131 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的   两条线段的比例中项   132 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割   线与圆交点的两条线段长的比例中项   133 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等   134 如果两个圆相切,那么切点一定在连心线上   135 ①两圆外离 d>R+r   ②两圆外切 d=R+r   ③两圆相交 R-r<d<R+r(R>r)   ④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)   136 定理 相交两圆的连心线垂直平分两圆的公共弦   137 定理 把圆分成n(n≥3):   ⑴依次连结各分点所得的多边形是这个圆的内接正n边形   ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形   138 定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆   139 正n边形的每个内角都等于(n-2)×180°/n   140 定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形   141 正n边形的面积Sn=pnrn/2 p表示正n边形的周长   142 正三角形面积√3a/4 a表示边长   143 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4   144 弧长计算公式:L=n兀R/180   145 扇形面积公式:S扇形=n兀R^2/360=LR/2   146 内公切线长= d-(R-r) 外公切线长= d-(R+r)
千山万术
2011-08-20 · TA获得超过172个赞
知道答主
回答量:185
采纳率:0%
帮助的人:78.3万
展开全部
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)

长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒

小学数学几何形体周长 面积 体积计算公式

1、长方形的周长=(长+宽)×2 C=(a+b)×2

2、正方形的周长=边长×4 C=4a

3、长方形的面积=长×宽 S=ab

4、正方形的面积=边长×边长 S=a.a= a

5、三角形的面积=底×高÷2 S=ah÷2

6、平行四边形的面积=底×高 S=ah

7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
高中 常用的诱导公式有以下几组:
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于k·π/2±α(k∈Z)的个三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα
上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦是“+”,其余全部是“-”;
第三象限内只有正切是“+”,其余全部是“-”;
第四象限内只有余弦是“+”,其余全部是“-”.
上述记忆口诀,一全正,二正弦,三正切,四余弦
其他三角函数知识:
同角三角函数基本关系
⒈同角三角函数的基本关系式
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
六角形记忆法:(参看图片或参考资料链接)
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式
⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
倍角公式
⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α))
半角公式
⒋半角的正弦、余弦和正切公式(降幂扩角公式)
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
万能公式
⒌万能公式
sinα=2tan(α/2)/(1+tan^2(α/2))
cosα=(1-tan^2(α/2))/(1+tan^2(α/2))
tanα=(2tan(α/2))/(1-tan^2(α/2))
万能公式推导
附推导:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因为cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
三倍角公式
⒍三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
三倍角公式推导
附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式联想记忆
记忆方法:谐音、联想
正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
余弦三倍角:4元3角 减 3元(减完之后还有“余”)
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
和差化积公式
⒎三角函数的和差化积公式
sinα+sinβ=2sin((α+β/2)) ·cos((α-β)/2)
sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)
cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)
cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)
积化和差公式
⒏三角函数的积化和差公式
sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα ·sinβ=- 0.5[cos(α+β)-cos(α-β)]
和差化积公式推导
附推导:
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
侯天资
2011-08-20
知道答主
回答量:8
采纳率:0%
帮助的人:6.8万
展开全部
多着呢 平方差 立方差 平方和 立方和 面积公式 表面积
还有函数上的 锐角函数上的 概率论上的 多了去了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
cxQ131468
2013-12-28
知道答主
回答量:5
采纳率:0%
帮助的人:6982
展开全部
a b=b a (a b) c=ac bc
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
时刻的爱
2011-08-28
知道答主
回答量:17
采纳率:0%
帮助的人:4.4万
展开全部
圆柱体的表面积新公式是?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式