1个回答
展开全部
=∫∫x*l^(-x²-y²) dD D={x>y} + ∫∫y*l^(-x²-y²) dD D={x<=y}
等号放哪都行,因为在交接点的左右极限相等,是连续函数
=∫(0~无穷)∫(y~无穷)x*l^(-x²-y²) dxdy + ∫(0~无穷)∫(x~无穷)y*l^(-x²-y²) dydx
=∫(0~无穷){(-0.5/lnl)*l^(-x²-y²) ] x: y~无穷 }dy +∫(0~无穷){(-0.5/lnl)l^(-x²-y²)] y: x~无穷 }dx
= ∫(0~无穷)(0.5/lnl)*l^(-2y²)dy+ ∫(0~无穷)(0.5/lnl)*l^(-2x²)dx
根据正态分布性质
∫(-无穷~无穷)(1/[(根号(2π))o])*e^(-t²/2o²)dt=1
∫(-无穷~无穷)e^(-t²/2o²)dt=(根号(2π))o
根据此类函数的对称性,取右面一半
∫(0~无穷) e^(-t²/2o²)dt=根号(π/2)o
∫(0~无穷) l^(-lnl*t²/2o²)dt=根号(π/2)o
lnl/(2o²)=2
o²=lnl/4
所以
∫(0~无穷) l^(-2t²)dt=根号(lnlπ/2)/2
此性质带回x,y的积分,得
= ∫(0~无穷)(0.5/lnl)*l^(-2y²)dy+ ∫(0~无穷)(0.5/lnl)*l^(-2x²)dx
=0.5根号(π/2lnl)/2+0.5根号(π/2lnl)/2
=根号(π/2lnl)/2
等号放哪都行,因为在交接点的左右极限相等,是连续函数
=∫(0~无穷)∫(y~无穷)x*l^(-x²-y²) dxdy + ∫(0~无穷)∫(x~无穷)y*l^(-x²-y²) dydx
=∫(0~无穷){(-0.5/lnl)*l^(-x²-y²) ] x: y~无穷 }dy +∫(0~无穷){(-0.5/lnl)l^(-x²-y²)] y: x~无穷 }dx
= ∫(0~无穷)(0.5/lnl)*l^(-2y²)dy+ ∫(0~无穷)(0.5/lnl)*l^(-2x²)dx
根据正态分布性质
∫(-无穷~无穷)(1/[(根号(2π))o])*e^(-t²/2o²)dt=1
∫(-无穷~无穷)e^(-t²/2o²)dt=(根号(2π))o
根据此类函数的对称性,取右面一半
∫(0~无穷) e^(-t²/2o²)dt=根号(π/2)o
∫(0~无穷) l^(-lnl*t²/2o²)dt=根号(π/2)o
lnl/(2o²)=2
o²=lnl/4
所以
∫(0~无穷) l^(-2t²)dt=根号(lnlπ/2)/2
此性质带回x,y的积分,得
= ∫(0~无穷)(0.5/lnl)*l^(-2y²)dy+ ∫(0~无穷)(0.5/lnl)*l^(-2x²)dx
=0.5根号(π/2lnl)/2+0.5根号(π/2lnl)/2
=根号(π/2lnl)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |