已知函数f(x)=xlnx,若f(x)>=ax-1对任意x>0恒成立,则a的取值范围

山98芋
2011-08-20 · TA获得超过320个赞
知道答主
回答量:187
采纳率:0%
帮助的人:212万
展开全部
解:
(1)
对函数f(x)=xlnx求导得:
f'(x)=lnx+1
令lnx+1=0,x=1/e
当x>1/e时,f'(x)>0
当0<x<1/e时,f'(x)<0
所以f(x)先减后增,最小值为f(1/e)=-1/e

(2)若对所有x≥1都有f(x)≥ax-1
则a≤[f(x)+1]/x,
则a≤[f(x)+1]/x的最小值
以下求[f(x)+1]/x的最小值
令g(x)=[f(x)+1]/x=(xlnx+1)/x=lnx+1/x
求导得g'(x)=1/x-1/x^2=(x-1)/x^2
令(x-1)/x^2=0,则x=1
当x>1时,g'(x)>0,即g(x)在x≥1时单调递增,最小值为g(1)=1
所以a≤1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式