如何判断一个函数是否连续,可导,可微,以及偏导数是否存在

如何判断一个函数是否连续,可导,可微,以及偏导数是否存在帮我把条件都写一下好吧... 如何判断一个函数是否连续,可导,可微,以及偏导数是否存在帮我把条件都写一下好吧 展开
 我来答
bill8341
高粉答主

2018-01-03 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3686万
展开全部

极限的概念是整个微积分的基础,需要深刻地理解,由极限的概念才能引出连续、导数、积分等概念。极限的概念首先是从数列的极限引出的。对于任意小的正数E,如果存在自然数M,使所有N》M时,|A(N)-A|都小于E,则数列的极限为A。极限不是相等,而是无限接近。而函数的极限是指在X0的一个临域内(不包含X0这一点),如果对于任意小的正数E,都存在正数Q,使所有(X0-Q,X0+Q)内的点,都满足|F(X)-A|《E,则F(X)在X0点的极限为A。很多求极限的题目都可以用极限的定义直接求出。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式