请大神给我详解
1个回答
展开全部
设y=arcsinx,则x=siny,dx=dsiny=cosdy
所以原来的化成了∫ysin^2(y)cosydy=(1/2)∫ysin(2y)cosydy
=(1/4)∫ysin(3y)dy+(1/4)∫ysinydy
=(1/36)∫(3y)sin(3y)d(3y)+(1/4)∫ysinydy
因为d(-ycosy)=ysindy-cosydy=ysindy-dsiny
所以原式化为
(1/36)∫d[sin(3y)-3ycos(3y)]+(1/4)∫d[siny-ycosy]
原来的积分区间为[-1,1],现在变成[-90,90]
代入上下限,得
(1/36)(-1-1)+(1/4)(1+1)=1/2-1/18=4/9
所以原来的化成了∫ysin^2(y)cosydy=(1/2)∫ysin(2y)cosydy
=(1/4)∫ysin(3y)dy+(1/4)∫ysinydy
=(1/36)∫(3y)sin(3y)d(3y)+(1/4)∫ysinydy
因为d(-ycosy)=ysindy-cosydy=ysindy-dsiny
所以原式化为
(1/36)∫d[sin(3y)-3ycos(3y)]+(1/4)∫d[siny-ycosy]
原来的积分区间为[-1,1],现在变成[-90,90]
代入上下限,得
(1/36)(-1-1)+(1/4)(1+1)=1/2-1/18=4/9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询