如图,已知直线AB经过圆O的圆心,且与圆O相交于A,B两点,点C在圆O上且∠AOC=30°点P是直线AB上一个动点
(与点O不重合),直线PC与圆O相交于点Q,问:是否存在点P,使QP=QO?存在,那么这样的点P共有几个?并求出相应的∠OCP的大小。不存在,请说明理由...
(与点O不重合),直线PC与圆O相交于点Q,问:是否存在点P,使QP=QO?存在,那么这样的点P共有几个?并求出相应的∠OCP的大小。不存在,请说明理由
展开
展开全部
解:①根据题意,画出图①,
在△QOC中,OC=OQ,
∴∠OQC=∠OCQ,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,
∴3∠OCP=120°,
∴∠OCP=40°.
②当P在线段OA的延长线上(如图②)
∵OC=OQ,∴∠OQP=
180°-∠QOC
2
①,
∵OQ=PQ,
∴∠OPQ=
180°-∠OQP
2
②,
在△OCP中,30°+∠QOC+∠OQP+∠OPQ=180°③,
把①②代入③得∠QOC=20°,则∠OQP=80°
∴∠OCP=100°;
③当P在线段OA的反向延长线上(如图③),
∵OC=OQ,
∴∠OCP=∠OQC=
180°-∠COQ
2
①,
∵OQ=PQ,
∴∠P=
180°-∠OQP
2
②,
∵∠AOC=30°,
∴∠COQ+∠POQ=150°③,
∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,
①②③④联立得
∠P=10°,
∴∠OCP=180°-150°-10°=20°.
在△QOC中,OC=OQ,
∴∠OQC=∠OCQ,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,
∴3∠OCP=120°,
∴∠OCP=40°.
②当P在线段OA的延长线上(如图②)
∵OC=OQ,∴∠OQP=
180°-∠QOC
2
①,
∵OQ=PQ,
∴∠OPQ=
180°-∠OQP
2
②,
在△OCP中,30°+∠QOC+∠OQP+∠OPQ=180°③,
把①②代入③得∠QOC=20°,则∠OQP=80°
∴∠OCP=100°;
③当P在线段OA的反向延长线上(如图③),
∵OC=OQ,
∴∠OCP=∠OQC=
180°-∠COQ
2
①,
∵OQ=PQ,
∴∠P=
180°-∠OQP
2
②,
∵∠AOC=30°,
∴∠COQ+∠POQ=150°③,
∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,
①②③④联立得
∠P=10°,
∴∠OCP=180°-150°-10°=20°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询