怎样把循环小数化成分数
①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。
②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。
扩展资料
无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。
例如:0.333333……
循环节为3
则0.3=3*10^(-1)+3*10^(-2)+……+3^10(-n)+……
前n项和为:30.1(1-(0.1)^(n))/(1-0.1)
当n趋向无穷时(0.1)^(n)=0
因此0.3333……=0.3/0.9=1/3
注意:m^n的意义为m的n次方。
方法2:设0.3333……,三的循环为x,
10x=3.3333……
10x-x=3.3333……-0.3333……
(注意:循环节被抵消了)
9x=3
3x=1
x=1/3
第二种:如,将3.305030503050……(3050为循环节)化为分数。
解:设:这个数的小数部分为a,这个小数表示成3+a
10000a-a=3050
9999a=3050
a=3050/9999
算到这里后,能约分就约分,这样就能表示循环部分了。再把整数部分乘分母加进去就是
(3×9999+3050)/9999
=33047/9999
还有混循环小数转分数
如0.1555……
循环节有一位,分母写个9,非循环节有一位,在9后添个0
分子为非循环节+循环节(连接)-非循环节+15-1=14
14/90
约分后为7/4
无限不循环小数
是不能转化成分数的
那么无限循环小数又是如何化分数的呢?由于它的小数部分位数是无限的,显然不可能写成十分之几、百分之几、千分之几……的数。其实,循环小数化分数难就难在无限的小数位数。所以我就从这里入手,想办法“剪掉”无限循环小数的“大尾巴”。策略就是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“大尾巴”完全相同,然后这两个数相减,“大尾巴”不就剪掉了吗!我们来看两个例子:
⑴
把0.4747……和0.33……化成分数。
等等既然我们讨论到无限这个概念
那么我们就应该明确一点
既然都是
无限循环小数
那么他们在循环节中小数点后
数的个数就没有区别的
统一的认为是无限个
例如:
想1:
0.4747……×100=47.4747……
0.4747……×100-0.4747……=47.4747……-0.4747……
(100-1)×0.4747……=47
即99×0.4747……
=47
那么
0.4747……=47/99
想2:
0.33……×10=3.33……
0.33……×10-0.33……=3.33…-0.33……
(10-1)
×0.33……=3
即9×0.33……=3
那么0.33……=3/9=1/3
由此可见,
纯循环小数化分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。
⑵把0.4777……和0.325656……化成分数。
想1:0.4777……×10=4.777……①
0.4777……×100=47.77……②
用②-①即得:
0.4777……×90=47-4
所以,
0.4777……=43/90
想2:0.325656……×100=32.5656……①
0.325656……×10000=3256.56……②
用②-①即得:
0.325656……×9900=3256.5656……-32.5656……
0.325656……×9900=3256-32
所以,
0.325656……=3224/9900
2、纯循环小数的化法,如,0.ab(ab循环)=(ab/99),最后化简.举例如下:
0.3(3循环)=3/9=1/3;
0.7(7循环)=7/9;
0.81(81循环)=81/99=9/11;
1.206(206循环)=1又206/999.
3、混循环小数的化法,如,0.abc(bc循环)=(abc-a)/990.最后化简.举例如下:
0.51(1循环)=(51-5)/90=46/90=23/45;
0.2954(54循环)=(2954-29)/9900=13/44;
1.4189(189循环)=1又(4189-4)/9990=1又4185/9990=1又31/74.
如有帮助请采纳,手机则点击右上角的满意,谢谢!!