函数y=lnx/x的最大值为

chyuhua5214
2011-08-21 · TA获得超过101个赞
知道答主
回答量:72
采纳率:0%
帮助的人:62.7万
展开全部
由已知易知f(x)=lnx/x的定义域为(0,+∞)
求导f'(x)=(1-lnx)/x^2
所以当x∈(0,e)时,f'(x)>0,即f(x)在(0,e)严格单调递增。
当x∈(e,+∞)时,f'(x)<0,即f(x)在(0,e)严格单调递减。
所以f(x)在x=e时取得极大值f(e)=1/e.(严格来说这里要先求出当x从大于0的方向趋于0时f(x)的极限。即当x趋于+∞时f(x)的极限,再比较)
从而f(x)的最大值为1/e
千年鬼哥
2011-08-21 · TA获得超过940个赞
知道小有建树答主
回答量:316
采纳率:0%
帮助的人:386万
展开全部
求导y'=1/x²-lnx/x²,令y‘>0,得x<e,又x>0。所以0<x<e;
令y’<0,得x>e。
故y=f(x)在(0,e)上单调递增(e,+∞)上单调递减。
故y最大值为y=f(e)=1/e
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
千山万术
2011-08-21 · TA获得超过172个赞
知道答主
回答量:185
采纳率:0%
帮助的人:78.5万
展开全部
y'=(1-lnx)/x^2
当y'=0时,x=e
此时最大值为1/e
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
snake406635029
2011-08-21 · TA获得超过168个赞
知道答主
回答量:109
采纳率:0%
帮助的人:67.4万
展开全部
求导可知 (0,e)为增函数 ,(e,正无穷)减函数,所以x = e 的时候取最大值 ,结果就不说了,太简单了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式