2个回答
展开全部
证明:
∵1/(1+b+c)+1/(1+c+a)+1/(1+a+b)≥1
∴两边同乘以-1,再加3,可得:
[1-1/(1+b+c)]+[1-1/(1+c+a)]+[1-1/(1+a+b)]≤2.
整理可得:
[(b+c)/(1+b+c)]+[(c+a)/(1+c+a)]+[(a+b)/(1+a+b)]≤2
该不等式两边同乘以(b+c)(1+b+c)+(c+a)(1+c+a)+(a+b)(1+a+b).
可得
2[(b+c)(1+b+c)+(c+a)(1+c+a)+(a+b)(1+a+b)]≥
[(b+c)(1+b+c)+(c+a)(1+c+a)+(a+b)(1+a+b)]×[(b+c)/(1+b+c)+(c+a)/(1+c+a)+(a+b)/(1+a+b)]
≥[(b+c)+(c+a)+(a+b)]² .(该步应用了柯西不等式)
∴2[(b+c)(1+b+c)+(c+a)(1+c+a)+(a+b)(1+a+b)]≥4(a+b+c)²
整理可得:
2(a+b+c)+2(a²+b²+c²)+2(ab+bc+ca)≥2(a+b+c)²
∴(a+b+c)+(a²+b²+c²)+(ab+bc+ca)≥a²+b²+c²+2(ab+bc+ca)
∴整理可得:
a+b+c≥ab+bc+ca.
∵1/(1+b+c)+1/(1+c+a)+1/(1+a+b)≥1
∴两边同乘以-1,再加3,可得:
[1-1/(1+b+c)]+[1-1/(1+c+a)]+[1-1/(1+a+b)]≤2.
整理可得:
[(b+c)/(1+b+c)]+[(c+a)/(1+c+a)]+[(a+b)/(1+a+b)]≤2
该不等式两边同乘以(b+c)(1+b+c)+(c+a)(1+c+a)+(a+b)(1+a+b).
可得
2[(b+c)(1+b+c)+(c+a)(1+c+a)+(a+b)(1+a+b)]≥
[(b+c)(1+b+c)+(c+a)(1+c+a)+(a+b)(1+a+b)]×[(b+c)/(1+b+c)+(c+a)/(1+c+a)+(a+b)/(1+a+b)]
≥[(b+c)+(c+a)+(a+b)]² .(该步应用了柯西不等式)
∴2[(b+c)(1+b+c)+(c+a)(1+c+a)+(a+b)(1+a+b)]≥4(a+b+c)²
整理可得:
2(a+b+c)+2(a²+b²+c²)+2(ab+bc+ca)≥2(a+b+c)²
∴(a+b+c)+(a²+b²+c²)+(ab+bc+ca)≥a²+b²+c²+2(ab+bc+ca)
∴整理可得:
a+b+c≥ab+bc+ca.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询