
在三角形ABC中,角A、B、C所对应的边为a,b,c,且a^2+c^2-b^2=1/2ac.求sin^(A+C)/2+cos2B的值
2个回答
展开全部
a^2+c^2-b^2=1/2ac
由余弦定理cosB=(a^2+c^2-b^2)/(2ac)=(1/2ac)/(2ac)=1/4
所以sin^(A+C)/2+cos2B
=sin²(90°-B/2)+2cos²B-1
=cos²(B/2)+2cos²B-1
=(1/2)(cosB-1)+2cos²B-1
=(1/2)(1/4-1)+2*(1/4)²-1
=-3/8+1/8-1
=-5/4
希望能帮到你O(∩_∩)O
由余弦定理cosB=(a^2+c^2-b^2)/(2ac)=(1/2ac)/(2ac)=1/4
所以sin^(A+C)/2+cos2B
=sin²(90°-B/2)+2cos²B-1
=cos²(B/2)+2cos²B-1
=(1/2)(cosB-1)+2cos²B-1
=(1/2)(1/4-1)+2*(1/4)²-1
=-3/8+1/8-1
=-5/4
希望能帮到你O(∩_∩)O
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询