2个回答
展开全部
x = 0 时,方程化为 y^3dy = 0, 通解是 y^4 = C.
x ≠ 0 时,两边同除以 x^3 , 方程化为 (y/x)dx = (1+y^3/x^3)dy,
记 y/x = p, 则 y = xp, dy = pdx+xdp, 化为
pdx = (1+p^3)(pdx+xdp), 即 -p^4dx = x(1+p^3)dp, -dx/x = [(1+p^3)/p^4]dp
lnC - lnx = (-1/3)/p^3 + lnp, 化为
lnC - lnx = -1/(3p^3) + lnp, C/x = pe^[-1/(3p^3)]
即 C = ye^[-x^3/(3y^3)], 即 y = Ce^[x^3/(3y^3)]
x ≠ 0 时,两边同除以 x^3 , 方程化为 (y/x)dx = (1+y^3/x^3)dy,
记 y/x = p, 则 y = xp, dy = pdx+xdp, 化为
pdx = (1+p^3)(pdx+xdp), 即 -p^4dx = x(1+p^3)dp, -dx/x = [(1+p^3)/p^4]dp
lnC - lnx = (-1/3)/p^3 + lnp, 化为
lnC - lnx = -1/(3p^3) + lnp, C/x = pe^[-1/(3p^3)]
即 C = ye^[-x^3/(3y^3)], 即 y = Ce^[x^3/(3y^3)]
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询