
已知集合 A={x|x^2+ax+1<=0}, 且B= {x|x^2-3x+2<=0},A包含于B,求实数a的取值范围 5
3个回答
展开全部
B= {x|x^2-3x+2<=0}
={ x| (x-1)(x-2)<=0 }
= { x| 1<=x<=2}
A={x|x^2+ax+1<=0}
case1:
if a^2-4 <0 ( no real root for x^2+ax+1 =0 }
ie -2<a< 2
=>A = 空集
=> A is subset of B
case 2:
if a<=-2 or a>=2
A = { x| (-a-√[a^2-4])/2 <= x <= (-a+√[a^2-4])/2 }
A is subset of B
=> (-a-√[a^2-4])/2 > 1 and (-a+√[a^2-4])/2 <2
=> √[a^2-4] < -a-2 and √[a^2-4] < 4+a
solving
(√[a^2-4] < -a-2) and (a<=-2 or a>=2)
=>[ (√[a^2-4] < -a-2) and a>=2] or [ (√[a^2-4] < -a-2) and a<=-2]
=> False or [ (√[a^2-4] < -a-2) and a<=-2]
=> a^2-4 < (-a-2)^2
=> 4a > -8
=> a > -2
solving
√[a^2-4] < 4+a and [a<=-2 or a>=2]
=>[ √[a^2-4] < 4+a and a<=-2 ] or [ √[a^2-4] < 4+a and a>=2 ]
=>[ a^2-4 < (4+a)^2 and -4<a<=-2 ] or a^2-4< (4+a)^2
=> [8a > -20 and -4<a<=2] or 8a>-20
=> a> -5/2
solution of case 2:
a > -2 and a> -5/2
ie a > -2
case 1 or case 2
-2<a< 2 or a> -2
ie -1 <a< 2
={ x| (x-1)(x-2)<=0 }
= { x| 1<=x<=2}
A={x|x^2+ax+1<=0}
case1:
if a^2-4 <0 ( no real root for x^2+ax+1 =0 }
ie -2<a< 2
=>A = 空集
=> A is subset of B
case 2:
if a<=-2 or a>=2
A = { x| (-a-√[a^2-4])/2 <= x <= (-a+√[a^2-4])/2 }
A is subset of B
=> (-a-√[a^2-4])/2 > 1 and (-a+√[a^2-4])/2 <2
=> √[a^2-4] < -a-2 and √[a^2-4] < 4+a
solving
(√[a^2-4] < -a-2) and (a<=-2 or a>=2)
=>[ (√[a^2-4] < -a-2) and a>=2] or [ (√[a^2-4] < -a-2) and a<=-2]
=> False or [ (√[a^2-4] < -a-2) and a<=-2]
=> a^2-4 < (-a-2)^2
=> 4a > -8
=> a > -2
solving
√[a^2-4] < 4+a and [a<=-2 or a>=2]
=>[ √[a^2-4] < 4+a and a<=-2 ] or [ √[a^2-4] < 4+a and a>=2 ]
=>[ a^2-4 < (4+a)^2 and -4<a<=-2 ] or a^2-4< (4+a)^2
=> [8a > -20 and -4<a<=2] or 8a>-20
=> a> -5/2
solution of case 2:
a > -2 and a> -5/2
ie a > -2
case 1 or case 2
-2<a< 2 or a> -2
ie -1 <a< 2
展开全部
我读高中的时候,这类题都做烂了!先把a当成已知数,将两个不等式分别求解,然后再划数轴,根据包含关系结合数轴得出答案!……希望能够帮助你!
追问
谢谢,很有帮助呢!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a<=-5/2
更多追问追答
追问
waincharles ,恭喜你,做错了!
追答
开始理解错了。
由B解得1≤x≤2
当x取1时,A=1^2+a*1+1=a+2<=0 ,则a<=-2
当x取2时,A=2^2+a*2+1=2a+5<=0 ,则a<=-5/2
在数轴上可知,-2≤a≤-5/2 时,包含于B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询