韦达定理是什么?
10个回答
展开全部
什么是韦达定理?韦达定理的推导过程,用一元二次方程求根公式
展开全部
韦达定理:
韦达定理说明了一元二次方程中根和系数之间的关系。
法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。
由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。
扩展资料:
定理推广
逆定理
如果两数α和β满足如下关系:α+β= ,α·β= ,那么这两个数α和β是方程 的根。
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
推广定理
韦达定理不仅可以说明一元二次方程根与系数的关系,还可以推广说明一元n次方程根与系数的关系。
参考资料:百度百科---韦达定理
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
韦达定理,即一元二次方程的根与系数关系定理
ax^2+bx+c=0的两个根分别为x1,x2
则x1+x2=-b/a,x1*x2=c/a
内容分析
1.一元二次方程的根的判别式
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac
当△>0时,方程有两个不相等的实数根;
当△=0时,方程有两个相等的实数根,
当△<0时,方程没有实数根.
2.一元二次方程的根与系数的关系
(1)如果一元二次方程ax2+bx+c=0(a≠0)的两个根是x1,x2,那么 ,
(2)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-P,
x1x2=q
(3)以x1,x2为根的一元二次方程(二次项系数为1)是
x2-(x1+x2)x+x1x2=0.
3.二次三项式的因式分解(公式法)
在分解二次三项式ax2+bx+c的因式时,如果可用公式求出方程ax2+bx+c=0的两个根是1,x2,那么ax2+bx+c=a(x-x1)(x-x2).
实例:已知x^2-2x-3=0的两根x1,x2,求x1平方+x2平方
解法一:求得方程2根为-1和3,所以 x1平方+x2平方=10
解法二:不解方程直接用韦达定理,x1平方+x2平方=(x1+x2)^2-2x1*x2=4+6=10
如果方程不容易解的话,韦达定理的优势就体现出来了.
ax^2+bx+c=0的两个根分别为x1,x2
则x1+x2=-b/a,x1*x2=c/a
内容分析
1.一元二次方程的根的判别式
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac
当△>0时,方程有两个不相等的实数根;
当△=0时,方程有两个相等的实数根,
当△<0时,方程没有实数根.
2.一元二次方程的根与系数的关系
(1)如果一元二次方程ax2+bx+c=0(a≠0)的两个根是x1,x2,那么 ,
(2)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-P,
x1x2=q
(3)以x1,x2为根的一元二次方程(二次项系数为1)是
x2-(x1+x2)x+x1x2=0.
3.二次三项式的因式分解(公式法)
在分解二次三项式ax2+bx+c的因式时,如果可用公式求出方程ax2+bx+c=0的两个根是1,x2,那么ax2+bx+c=a(x-x1)(x-x2).
实例:已知x^2-2x-3=0的两根x1,x2,求x1平方+x2平方
解法一:求得方程2根为-1和3,所以 x1平方+x2平方=10
解法二:不解方程直接用韦达定理,x1平方+x2平方=(x1+x2)^2-2x1*x2=4+6=10
如果方程不容易解的话,韦达定理的优势就体现出来了.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
达定理:
设一元二次方程
中,两根x₁、x₂有如下关系:
,
韦达定理说明了一元二次方程中根和系数之间的关系。
法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。
由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。
扩展资料:
定理推广
逆定理
如果两数α和β满足如下关系:α+β=
,α·β=
,那么这两个数α和β是方程
的根。
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
推广定理
韦达定理不仅可以说明一元二次方程根与系数的关系,还可以推广说明一元n次方程根与系数的关系。
定理:设
(i=1、2、3、……n)是方程:
的n个根,记
(k为整数),则有:
。
参考资料:百度百科---韦达定理
设一元二次方程
中,两根x₁、x₂有如下关系:
,
韦达定理说明了一元二次方程中根和系数之间的关系。
法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。
由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。
扩展资料:
定理推广
逆定理
如果两数α和β满足如下关系:α+β=
,α·β=
,那么这两个数α和β是方程
的根。
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
推广定理
韦达定理不仅可以说明一元二次方程根与系数的关系,还可以推广说明一元n次方程根与系数的关系。
定理:设
(i=1、2、3、……n)是方程:
的n个根,记
(k为整数),则有:
。
参考资料:百度百科---韦达定理
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在中学阶段,韦达定理是关于一元二次方程中根与系数之间的关系。法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这个定理。韦达最早发现代数方程的根与系数之间的这种关系,因此,人们把这个关系称之为韦达定理。
韦达定理在求根的对称函数,讨论一元二次方程根的符号,解对称方程组,以及解一些与圆锥曲线相关的问题时,都有独到的作用。
韦达定理在求根的对称函数,讨论一元二次方程根的符号,解对称方程组,以及解一些与圆锥曲线相关的问题时,都有独到的作用。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询