设a与b为正整数。已知4ab-1整除(4a²-1)²,证明:a=b。

 我来答
hbc3193034
2018-08-05 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
(2n+1)^2=4n(n+1)+1,被8除余1,
4a^2-1=(2a-1)(2a+1),其因数都是奇数,
4ab-1不可能是奇数的平方,

∴4ab-1整除(4a²-1)²,得4ab-1=4a^2-1,
于是b=a.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式