求函数y=sin(2x+π/6)+cos(2x+π/3)的最小正周期和最大值

fnxnmn
2011-08-22 · TA获得超过5.8万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6448万
展开全部
y=sin(2x+π/6)+cos(2x+π/3)
=sin2xcosπ/6+cos2xsinπ/6+cos2xcosπ/3-sin2xsinπ/3
= cos2xsinπ/6+cos2xcosπ/3
=1/2* cos2x+1/2* cos2x
=cos2x,
所以函数的最小正周期是π,最大值是1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式