2个回答
展开全部
用数学归纳法证明,需要一个辅助结论。
引理:设A≥0,B≥0,则(A+B)n≥An+nAn-1B。
注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)。
原题等价于:((a1+a2+…+an )/n)n≥a1a2…an。
当n=2时易证;
假设当n=k时命题成立,即
((a1+a2+…+ak )/k)k≥a1a2…ak。那么当n=k+1时,不妨设ak+1是a1,a2 ,…,ak+1中最大者,则
k ak+1≥a1+a2+…+ak。
设s=a1+a2+…+ak,
((a1+a2+…+ak+1)/(k+1))k+1
=(s/k+(k ak+1-s)/(k(k+1)))k+1
≥(s/k)k+1+(k+1)(s/k)k(k ak+1-s)/k(k+1) 用引理
=(s/k)k ak+1
≥a1a2…ak+1。用归纳假设
引理:设A≥0,B≥0,则(A+B)n≥An+nAn-1B。
注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)。
原题等价于:((a1+a2+…+an )/n)n≥a1a2…an。
当n=2时易证;
假设当n=k时命题成立,即
((a1+a2+…+ak )/k)k≥a1a2…ak。那么当n=k+1时,不妨设ak+1是a1,a2 ,…,ak+1中最大者,则
k ak+1≥a1+a2+…+ak。
设s=a1+a2+…+ak,
((a1+a2+…+ak+1)/(k+1))k+1
=(s/k+(k ak+1-s)/(k(k+1)))k+1
≥(s/k)k+1+(k+1)(s/k)k(k ak+1-s)/k(k+1) 用引理
=(s/k)k ak+1
≥a1a2…ak+1。用归纳假设
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询