高数,问题求解,谢谢 20
分析,方法很多,今天心情好,都给你用用!
解:
1°(夹逼综合应用)
∵
|(x^3+y^4)/(x^2+y^2)|≥0
|(x^3+y^4)/(x^2+y^2)|≤|x^3/(x^2+y^2)|+|y^4/(x^2+y^2)|
=|x|·|x^2/(x^2+y^2)|+|y^2|·|y^2/(x^2+y^2)|
≤|x|+|y^2|
显然:lim(x,y→0) |x|+|y^2|=0
根据夹逼准则:
lim(x,y→0) |(x^3+y^4)/(x^2+y^2)| =0
由极限唯一性,可知:
lim(x,y→0) (x^3+y^4)/(x^2+y^2) =0=f(0,0)
∴连续
2°(二元函数洛必达法则)
f(x,y)=(x^3+y^4)/(x^2+y^2)=f(x,y)
lim(x,y→0)f(x,y)
= lim(x,y→0) (3x²dx+4y³dy)/(2xdx+2ydy)
= lim(x,y→0) (3x³+4y^4)/(2x²+2y²)
= 2lim(x,y→0)(x^3+y^4)/(x^2+y^2) -[x³/(x^2+y^2)]
=2lim(x,y→0) f(x,y) - [x³/(x^2+y^2)]
0≤|x³/(x^2+y^2)|=|x|·|x²/(x²+y²)|≤|x|
∴
lim(x,y→0)f(x,y)
=2lim(x,y→0)f(x,y)
2>1
因此:
lim(x,y→0)f(x,y) =0=f(0,0)
∴连续
fx'|(0,0)=[(3x^2)(x^2+y^2)-2x·(x^3+y^4)]/(x^2+y^2)²=0
fy'|(0,0)=[(4y^3)(x^2+y^2)-2y·(x^3+y^4)]/(x^2+y^2)²=0