级数1/n²lnn的敛散性
5个回答
展开全部
1/(lnn)²发散
1/(lnn)²是正项级数,可使用比较判别法:[n->∞]
lim[1/(lnn)²]/(1/n)=limn/ln²n=∞,由于调和级数发散,所以∑1/(lnn)²发散
1/nlnn发散
由于是非负递减序列,使用柯西积分判别法,1/nlnn与∫[2->∞]1/xlnxdx有相同的敛散性
∫1/xlnxdx=∫1/lnxd(lnx)=lnlnx[2->∞]=∞-lnln2发散,故原级数发散
sin[(n²+1)/n]发散
这个题目有点奇怪,因为n->∞时,[(n²+1)/n]->∞,sin∞=?
1/(lnn)²是正项级数,可使用比较判别法:[n->∞]
lim[1/(lnn)²]/(1/n)=limn/ln²n=∞,由于调和级数发散,所以∑1/(lnn)²发散
1/nlnn发散
由于是非负递减序列,使用柯西积分判别法,1/nlnn与∫[2->∞]1/xlnxdx有相同的敛散性
∫1/xlnxdx=∫1/lnxd(lnx)=lnlnx[2->∞]=∞-lnln2发散,故原级数发散
sin[(n²+1)/n]发散
这个题目有点奇怪,因为n->∞时,[(n²+1)/n]->∞,sin∞=?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
级数1/n²lnn是收敛的,理由如下:
(1)
1/n²lnn在正自然数区间上恒有1/n²lnn>=0;
(2)
对分子分母进行求导:(1/n)/2n=1/(2n^2),趋近于0;
(3)
1/(n+1)²ln(n+1)/[1/n²lnn]<=1,递减。
(1)
1/n²lnn在正自然数区间上恒有1/n²lnn>=0;
(2)
对分子分母进行求导:(1/n)/2n=1/(2n^2),趋近于0;
(3)
1/(n+1)²ln(n+1)/[1/n²lnn]<=1,递减。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分享一种解法,转化成积分形式、利用广义积分的敛散性定理求解。
显然,级数∑1/(n²lnn)的n=2,3,……,∞。∴级数∑1/(n²lnn)与∫(2,∞)dx/(x²lnx)具有相同的敛散性。
令lnx=t,∴∫(2,∞)dx/(x²lnx)=∫(ln2,∞)e^(-t)dt/t。
设f(t)=e^(-t)/t。∴lim(t→∞)t²f(t)=lim(t→∞)t/e^t=0。由广义积分的极限判别法,可知∫(ln2,∞)e^(-t)dt/t收敛。
∴级数∑1/(n²lnn)收敛。
供参考。
显然,级数∑1/(n²lnn)的n=2,3,……,∞。∴级数∑1/(n²lnn)与∫(2,∞)dx/(x²lnx)具有相同的敛散性。
令lnx=t,∴∫(2,∞)dx/(x²lnx)=∫(ln2,∞)e^(-t)dt/t。
设f(t)=e^(-t)/t。∴lim(t→∞)t²f(t)=lim(t→∞)t/e^t=0。由广义积分的极限判别法,可知∫(ln2,∞)e^(-t)dt/t收敛。
∴级数∑1/(n²lnn)收敛。
供参考。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为二者均为正项级数,且
当n>=6,(n+1)!
1的p级数,它是收敛的!
利用比较审敛法,得
原级数是收敛的!
当n>=6,(n+1)!
1的p级数,它是收敛的!
利用比较审敛法,得
原级数是收敛的!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |