高数求极限题 看图第5题
1个回答
展开全部
lim(1+x)(1+x^2)…[1+x^(2^n)]
=lim(1-x)(1+x)(1+x^2)…[1+x^(2^n)]/(1-x)
=lim(1-x^2)(1+x^2)…[1+x^(2^n)]/(1-x)
.逐项乘下去得:
=lim[1-x^(2^n+1)]/(1-x)
因为|x|<1,所以lim x^(2^n+1)=0
所以原式=lim1/(1-x),这里应该是n→∞,而不是x→∞
答案就是1/(1-x)
=lim(1-x)(1+x)(1+x^2)…[1+x^(2^n)]/(1-x)
=lim(1-x^2)(1+x^2)…[1+x^(2^n)]/(1-x)
.逐项乘下去得:
=lim[1-x^(2^n+1)]/(1-x)
因为|x|<1,所以lim x^(2^n+1)=0
所以原式=lim1/(1-x),这里应该是n→∞,而不是x→∞
答案就是1/(1-x)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询