高数求极限题 看图第5题

 我来答
第10号当铺
2019-01-07 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1.1万
采纳率:71%
帮助的人:4336万
展开全部
lim(1+x)(1+x^2)…[1+x^(2^n)]
=lim(1-x)(1+x)(1+x^2)…[1+x^(2^n)]/(1-x)
=lim(1-x^2)(1+x^2)…[1+x^(2^n)]/(1-x)
.逐项乘下去得:
=lim[1-x^(2^n+1)]/(1-x)
因为|x|<1,所以lim x^(2^n+1)=0
所以原式=lim1/(1-x),这里应该是n→∞,而不是x→∞
答案就是1/(1-x)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式