a的x次方的不定积分过程?
^^∫a^xdx=∫e^(log(a)x)dx=1/log(a)∫e^(log(a)x)d(log(a)x)=1/log(a)e^(log(a)x)+c=1/log(a)a^x+c
其中利用了e^x的原函数是e^x+c。
在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。
不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:
1、根式代换法,
2、三角代换法。
在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。
解析如下:
^^∫a^xdx=∫e^(log(a)x)dx=1/log(a)∫e^(log(a)x)d(log(a)x)=1/log(a)e^(log(a)x)+c=1/log(a)a^x+c。
其中利用了e^x的原函数是e^x+c。
在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。
不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
解方程的注意事项
1、有分母先去分母。
2、有括号就去括号。
3、需要移项就进行移项。
4、合并同类项。
5、系数化为1求得未知数的值。
6、开头要写“解”。