设f(x)在[0,1]上二阶导数连续,f(0)=f(1)=0,并且当x属于(0,1)时,|f‘‘(x)|小于等于A,求证
1个回答
展开全部
f(0)=f(x)-f'(x)x+f''(ξ)x^2 /2
f(1)=f(x)-f'(x)(x-1)+f''(η)(x-1)^2 /2
两式相减,f'(x)=[f''(ξ)*x^2 - f''(η)*(x-1)^2] /2
|f'(x)|<=A/2 *(2x*2 +2x +1)<=A/2
f(1)=f(x)-f'(x)(x-1)+f''(η)(x-1)^2 /2
两式相减,f'(x)=[f''(ξ)*x^2 - f''(η)*(x-1)^2] /2
|f'(x)|<=A/2 *(2x*2 +2x +1)<=A/2
追问
最后一步两式相减得不出结论的吧,不等式能这么减吗?
追答
当然能,且让我慢慢道来
两式相减,0=0-f'(x)+[f''(ξ)x^2 - f''(η(x-1)^2]/2
f'(x)=[f''(ξ)x^2 - f''(η)(x-1)^2]/2
|f'(x)|=|f''(ξ)x^2 - f''(η)(x-1)^2|/2<=(|f''(ξ)|x^2 +|f''(η)x-1)^2)/2<=A/2*(x^2+(x-1)^2)=A/2(2x^2-2x+1)
<=A/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询