(1)已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q

(1)已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点.就下面给出的三种情况(如图①、②、③),先用量角... (1)已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点.就下面给出的三种情况(如图①、②、③),先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度?并利用图③证明你的结论. 展开
令羽集
2012-05-07 · TA获得超过1669个赞
知道小有建树答主
回答量:301
采纳率:0%
帮助的人:80.6万
展开全部
解:∠BQM为定值.
理由:如图①,∵△ABC是等边三角形,
∴∠ABC=∠C=60°,AB=BC
∵BM=CN
∴△ABM≌△BCN(SAS)
∴∠BAM=∠CBN(全等三角形的对应角相等),
∴∠BQM=∠BAQ+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°
即∠BQM为定值.
图②中:∠BQM=∠ABN+∠BAM
∵△ABM≌△BCN
∴∠BAM=∠CBN
∴∠BQM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°
图③中:
∠BQM=∠N+∠NAQ
∵△ABM≌△BCN,
∴∠N=∠M,且∠NAQ=∠CAM,
又∵∠ACB=∠M+∠CAM=∠N+∠NAQ,
且∠BQM=∠N+∠NAQ,
∴∠BQM=∠ACB=60°.
wenxindefeng6
高赞答主

2011-08-23 · 一个有才华的人
知道大有可为答主
回答量:1.4万
采纳率:100%
帮助的人:5909万
展开全部
∠BQM=60°
证明:见图③
∵BM=CN;BA=CB;∠ABM=∠BCN=60°.
∴ ⊿ABM≌ΔBCN(SAS0,得∠M=∠N.
故:∠BQM=∠N+∠NAQ=∠M+∠MAC=∠ACB=60°.
更多追问追答
追问
;∠ABM=∠BCN是怎样得出来的?
追答
三角形ABC为等边三角形,故:∠ABM=∠BCN=60°
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式