高数题求解答过程。谢谢。
展开全部
解:(1)sinxsinxsin3x=sin^2xsinx(4cos^2x-1)=(1-cos^2x)(4cos^2x+1)sinx
=(-4cos^4x+3cos^2x-1)sinx=(4cos^4x-3cos^2x+1)(-sinx)
原式=∫(4cos^4x-3cos^2x+1)dcosx=(4/5)cos^5x-cos^3x+cosx+C;
(2) [ x/(a^2-x^2)^(3/2)]'=[(a^2-x^2)^(3/2)-x*(3/2)(a^2-x^2)^(1/2)*(-2x)]/(a^2-x^2)^6
=1/(a^2-x^2)^(3/2)+(3x^2-3a^+3a^2)/(a^2-x^2)^(5/2)=-2/(a^2-x^2)^(3/2)+3a^2/(a^2-x^2)^(5/2); 方程两边同时除以3a^2,并移项整理,得:
1/(a^2-x^2)^(5/2)={x/[3a^2(a^2-x^2)^(3/2)]}'+(2/3a^2)/(a^2-x^2)^(3/2)];
同理:[x/(a^2-x^2)^(1/2)]'=1/(a^2-x^2)^(1/2)+(x^2-a^2+a^2)*(a^2-x^2)^(-1/2)/(a^2-x^2)
=a^2/(a^2-x^2)^(3/2)
原式=x/[3a^2(a^2-x^2)^(3/2)]+x/[3a^4(a^2-x^2)^(1/2)]+C。
(3) [x/(1+x^2)]'=1/(1+x^2)-2x^2/(1+x^2)^2; x^2/(1+x^2)^2=(1/2) {1/(1+x^2)-[x/(1+x^2)]'};
原式=(-1/2) [x/(1+x^2)]+(1/2)∫[1/(1+x^2)dx=(1/2)arctanx-1/[2x(1+x^2)]+C。
(4)令t=1+x^2, x=√(1-t); dx=-1/[2√(1-t)]dt;
原式=-2∫[1/√(1-t)]^4d√(1-t)=(2/3)/√(1-t)^3+C=2/3√(x^2)^3=2/(3x3)+C。
(5)积分式=(x^4-x^2+1)/x^6-1/(1+x^2)=1/x^2-1/x^4-1/x^6-1/(1+x)^2
原式=∫[1/x^2-1/x^4+1/x^6-1/(1+x^2)]dx=-1/x+1/(3x^3)-1/(5x^5)-arctanx+C。
=(-4cos^4x+3cos^2x-1)sinx=(4cos^4x-3cos^2x+1)(-sinx)
原式=∫(4cos^4x-3cos^2x+1)dcosx=(4/5)cos^5x-cos^3x+cosx+C;
(2) [ x/(a^2-x^2)^(3/2)]'=[(a^2-x^2)^(3/2)-x*(3/2)(a^2-x^2)^(1/2)*(-2x)]/(a^2-x^2)^6
=1/(a^2-x^2)^(3/2)+(3x^2-3a^+3a^2)/(a^2-x^2)^(5/2)=-2/(a^2-x^2)^(3/2)+3a^2/(a^2-x^2)^(5/2); 方程两边同时除以3a^2,并移项整理,得:
1/(a^2-x^2)^(5/2)={x/[3a^2(a^2-x^2)^(3/2)]}'+(2/3a^2)/(a^2-x^2)^(3/2)];
同理:[x/(a^2-x^2)^(1/2)]'=1/(a^2-x^2)^(1/2)+(x^2-a^2+a^2)*(a^2-x^2)^(-1/2)/(a^2-x^2)
=a^2/(a^2-x^2)^(3/2)
原式=x/[3a^2(a^2-x^2)^(3/2)]+x/[3a^4(a^2-x^2)^(1/2)]+C。
(3) [x/(1+x^2)]'=1/(1+x^2)-2x^2/(1+x^2)^2; x^2/(1+x^2)^2=(1/2) {1/(1+x^2)-[x/(1+x^2)]'};
原式=(-1/2) [x/(1+x^2)]+(1/2)∫[1/(1+x^2)dx=(1/2)arctanx-1/[2x(1+x^2)]+C。
(4)令t=1+x^2, x=√(1-t); dx=-1/[2√(1-t)]dt;
原式=-2∫[1/√(1-t)]^4d√(1-t)=(2/3)/√(1-t)^3+C=2/3√(x^2)^3=2/(3x3)+C。
(5)积分式=(x^4-x^2+1)/x^6-1/(1+x^2)=1/x^2-1/x^4-1/x^6-1/(1+x)^2
原式=∫[1/x^2-1/x^4+1/x^6-1/(1+x^2)]dx=-1/x+1/(3x^3)-1/(5x^5)-arctanx+C。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询