已知[lg(c/a)]^2=4lg(a/b)lg(b/c),则a,b,c
2个回答
展开全部
将等式变形:原式变为(lg(b/c)+lg(a/b))^2=4;化简得:
(lg(b/c))^2+(lg(a/b))^2=2*lg(a/b)*lg(b/c);得:(lg(b/c)-lg(a/b))^2=0
得:lg(b/c)=lg(a/b)
所以b/c=a/b
故:a、b、c为等比数列
(lg(b/c))^2+(lg(a/b))^2=2*lg(a/b)*lg(b/c);得:(lg(b/c)-lg(a/b))^2=0
得:lg(b/c)=lg(a/b)
所以b/c=a/b
故:a、b、c为等比数列
更多追问追答
追问
怎么变为(lg(b/c)+lg(a/b))^2=4?
追答
将等式变形:
lg(c/a)=lg(a/b)+lg(b/c)
原式变为(lg(b/c)+lg(a/b))^2=4*lg(a/c)*lg(b/c);化简得:
(lg(b/c))^2+(lg(a/b))^2=2*lg(a/b)*lg(b/c);得:(lg(b/c)-lg(a/b))^2=0
得:lg(b/c)=lg(a/b)
所以b/c=a/b
故:a、b、c为等比数列
追问
怎么变为(lg(b/c)+lg(a/b))^2=4?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询