牧场上一片牧草,可供27头牛吃6周,或供23头牛吃9周,如果牧草每周均速生长,那么他可供21头牛吃几周?
3个回答
展开全部
解:设草每周的生长速度为V;设草原长为K;设可供21头牛吃X周;
依题意:
27*6T=K+6V
23*9T=K+9V
则21*XT=K+XV
其中T为每头牛每周的吃草量;(参数)
解得:K=72T
V=15T
代入方程21*XT=K+XV解得X=12
故可供21头牛吃12周.
依题意:
27*6T=K+6V
23*9T=K+9V
则21*XT=K+XV
其中T为每头牛每周的吃草量;(参数)
解得:K=72T
V=15T
代入方程21*XT=K+XV解得X=12
故可供21头牛吃12周.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-08-23
展开全部
设每头牛每星期的吃草量为1。
27头牛6个星期的吃草量为27×6=162,这既包括牧场上原有的草,也包括6个星期长的草。
23头牛 9个星期的吃草量为 23×9= 207,这既包括牧场上原有的草,也包括9个星期长的草。
因为牧场上原有的草量一定,所以上面两式的差207-162=45正好是9个星期生长的草量与6个星期生长的草量的差。由此可以求出每星期草的生长量是45÷(9-6)=15。
牧场上原有的草量是162-15×6=72,或207-15×9= 72。
前面已假定每头牛每星期的吃草量为1,而每星期新长的草量为15,因此新长出的草可供15头牛吃。今要放牧21头牛,还余下21-15=6头牛要吃牧场上原有的草,这牧场上原有的草量够6头牛吃几个星期,就是21头牛吃完牧场上草的时间。72÷6=12(星期)。
也就是说,放牧21头牛,12个星期可以把牧场上的草吃光
27头牛6个星期的吃草量为27×6=162,这既包括牧场上原有的草,也包括6个星期长的草。
23头牛 9个星期的吃草量为 23×9= 207,这既包括牧场上原有的草,也包括9个星期长的草。
因为牧场上原有的草量一定,所以上面两式的差207-162=45正好是9个星期生长的草量与6个星期生长的草量的差。由此可以求出每星期草的生长量是45÷(9-6)=15。
牧场上原有的草量是162-15×6=72,或207-15×9= 72。
前面已假定每头牛每星期的吃草量为1,而每星期新长的草量为15,因此新长出的草可供15头牛吃。今要放牧21头牛,还余下21-15=6头牛要吃牧场上原有的草,这牧场上原有的草量够6头牛吃几个星期,就是21头牛吃完牧场上草的时间。72÷6=12(星期)。
也就是说,放牧21头牛,12个星期可以把牧场上的草吃光
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询