初二数学分式题。
若abc=1,求证1/(ab+a+1)+1/(bc+b+1)+1/(ca+c+1)=1.已知(1/x)-(1/y)=2001,求分式(x-xy-y)/(x-y)的值。这。...
若abc=1,求证1/(ab+a+1)+1/(bc+b+1)+1/(ca+c+1)=1.
已知(1/x)-(1/y)=2001,求分式(x-xy-y)/(x-y)的值。
这 。。。 我还是发起投票把。 不过我感谢第一位。 展开
已知(1/x)-(1/y)=2001,求分式(x-xy-y)/(x-y)的值。
这 。。。 我还是发起投票把。 不过我感谢第一位。 展开
3个回答
展开全部
1/(ab+a+1)+1/(bc+b+1)+1/(ca+c+1)
=1/(1/c+a+1)+1/(bc+b+1)+1/(ca+c+1).
=c/(1+ac+c)+1/(bc+b+1)+1/(ca+c+1)
=c+1/(1+ac+c)+1/(bc+b+1)
=c+1/(1+1/b+c)+1/(bc+b+1)
=b(c+1)/(b+1+bc)+1/(bc+b+1)
=(bc+b+1)/(b+1+bc)
=1
(x-xy-y)/(x-y)
=1-xy/(x-y)
=1-1/(1/y-1/x)
=1+1/(1/x-1/y)
=1+1/2001
=2002/2001
=1/(1/c+a+1)+1/(bc+b+1)+1/(ca+c+1).
=c/(1+ac+c)+1/(bc+b+1)+1/(ca+c+1)
=c+1/(1+ac+c)+1/(bc+b+1)
=c+1/(1+1/b+c)+1/(bc+b+1)
=b(c+1)/(b+1+bc)+1/(bc+b+1)
=(bc+b+1)/(b+1+bc)
=1
(x-xy-y)/(x-y)
=1-xy/(x-y)
=1-1/(1/y-1/x)
=1+1/(1/x-1/y)
=1+1/2001
=2002/2001
展开全部
1.
∵abc=1,∴ab=1/c,ac=1/b
左边=1/(1/c+ac/c+c/c)+1/(bc+b+1)+1/(ca+c+1)
=(c+1)/(ac+c+1)+1/(bc+b+1)
=(c+1)/[(bc+b+1)/b]+1/(bc+b+1)
=(bc+b+1)/(bc+b+1)
=1
∴左边=右边
∴1/(ab+a+1)+1/(bc+b+1)+1/(ca+c+1)=1.
2.
∵(1/x)-(1/y)=2001
∴(y-x)/(xy)=2001,(xy)/(y-x)=1/2001
(x-xy-y)/(x-y)
=[(x-y)-xy]/(x-y])
=1-(xy)/(x-y)
=1+(xy)/(y-x)
=1+1/2001
=2002/2001
∴分式(x-xy-y)/(x-y)的值为2002/2001
∵abc=1,∴ab=1/c,ac=1/b
左边=1/(1/c+ac/c+c/c)+1/(bc+b+1)+1/(ca+c+1)
=(c+1)/(ac+c+1)+1/(bc+b+1)
=(c+1)/[(bc+b+1)/b]+1/(bc+b+1)
=(bc+b+1)/(bc+b+1)
=1
∴左边=右边
∴1/(ab+a+1)+1/(bc+b+1)+1/(ca+c+1)=1.
2.
∵(1/x)-(1/y)=2001
∴(y-x)/(xy)=2001,(xy)/(y-x)=1/2001
(x-xy-y)/(x-y)
=[(x-y)-xy]/(x-y])
=1-(xy)/(x-y)
=1+(xy)/(y-x)
=1+1/2001
=2002/2001
∴分式(x-xy-y)/(x-y)的值为2002/2001
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你是找题目?
更多追问追答
追问
不好意思,提问时写不下了,补充好了。
追答
第2题 答案2000/2001
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询