展开全部
积分第一中值定理:如果f(x),g(x)在[a,b]上连续,且g(x)在[a,b]上不变号,则至少存在一点ξ∈[a,b],使得:∫(a,b)f(x)g(x)dx=f(ξ)*∫(a,b)g(x)dx
来看∫(a,π-a) [√(u+π)-√u]/√[u(u+π)]*sinudu
因为在[a,π-a]上,g(u)=[√(u+π)-√u]/√[u(u+π)]恒大于0,且sinu和g(u)在[a,π-a]上连续
所以存在ξ∈[a,π-a],使得
∫(a,π-a) [√(u+π)-√u]/√[u(u+π)]*sinudu
=sinξ*∫(a,π-a) [√(u+π)-√u]/√[u(u+π)]du
>=sina*∫(a,π-a) [√(u+π)-√u]/√[u(u+π)]du
来看∫(a,π-a) [√(u+π)-√u]/√[u(u+π)]*sinudu
因为在[a,π-a]上,g(u)=[√(u+π)-√u]/√[u(u+π)]恒大于0,且sinu和g(u)在[a,π-a]上连续
所以存在ξ∈[a,π-a],使得
∫(a,π-a) [√(u+π)-√u]/√[u(u+π)]*sinudu
=sinξ*∫(a,π-a) [√(u+π)-√u]/√[u(u+π)]du
>=sina*∫(a,π-a) [√(u+π)-√u]/√[u(u+π)]du
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询