tan(a+b)=-1,tan(a-b)=1/2,则sin2a/sin2b=多少
3个回答
展开全部
tan(a+b)tan(a-b)=-1
tan^2a-tan^2b=-(1-tan^2atan^2b)
tan^2a+1=tan^2b(1+tan^2a)
(tan^2a+1)(tan^2b-1)=0
tan^2b=1
tanb=1,或tanb=-1
tana+tanb=-2(1-tanatanb)
所以tana=3,或tana=-3
sin2a/sin2b=sinacosa/sinbcosb=(tana/tanb)*(cos^2a/cos^2b)
=3*(1+tan^2b)/(1+tan^2a)=3*2/10=3/5
tan^2a-tan^2b=-(1-tan^2atan^2b)
tan^2a+1=tan^2b(1+tan^2a)
(tan^2a+1)(tan^2b-1)=0
tan^2b=1
tanb=1,或tanb=-1
tana+tanb=-2(1-tanatanb)
所以tana=3,或tana=-3
sin2a/sin2b=sinacosa/sinbcosb=(tana/tanb)*(cos^2a/cos^2b)
=3*(1+tan^2b)/(1+tan^2a)=3*2/10=3/5
更多追问追答
追问
好像 你这个 第一步就不对
追答
tan(a+b)=(tana+tanb)/(1-tanatanb)
tan(a-b)=(tana-tanb)/(1+tanatanb)
tan(a+b)tan(a-b)=-1
((tana+tanb)/(1-tanatanb))*((tana-tanb)/(1+tanatanb))=-1
tan^2a-tan^2b=-(1-tan^2atan^2b)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin2a = sin[(a+b)+(a-b)] = sin(a+b)cos(a-b) +cos(a+b)sin(a-b)
sin2b= sin[(a+b)-(a-b)] = sin(a+b)cos(a-b) -cos(a+b)sin(a-b)
则,
sin2a/sin2b=[sin(a+b)cos(a-b) +cos(a+b)sin(a-b)]/[ sin(a+b)cos(a-b) -cos(a+b)sin(a-b)]
分子分母同时除以cos(a+b)cos(a-b),得
=[tan(a+b)+tan(a-b)]/[tan(a+b)-tan(a-b)]
=(-1+1/2)/(-1-1/2)
=3
sin2b= sin[(a+b)-(a-b)] = sin(a+b)cos(a-b) -cos(a+b)sin(a-b)
则,
sin2a/sin2b=[sin(a+b)cos(a-b) +cos(a+b)sin(a-b)]/[ sin(a+b)cos(a-b) -cos(a+b)sin(a-b)]
分子分母同时除以cos(a+b)cos(a-b),得
=[tan(a+b)+tan(a-b)]/[tan(a+b)-tan(a-b)]
=(-1+1/2)/(-1-1/2)
=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询