椭圆的问题 求过程 求答案。 1 2小题都要!
展开全部
解:(1)椭圆C:x
2
/a
2
+
y
2
/b
2
=
1(a
>
b
>
0)的右焦点F(c,0),c
=
√(a
2
–
b
2
),过点F而且倾斜角为60°的直线的方程为:y
=
(x
–
c)tan60°
=
√3(x
–
c),与椭圆方程联立可得:b
2
x
2
+
a
2
[√3(x
–
c)]
2
=
a
2
b
2
,化简可得(b
2
+
3a
2
)x
2
–
6a
2
cx
+
3a
2
c
2
–
a
2
b
2
=
0,根的判别式Δ=
(-6a
2
c)
2
–
4*(b
2
+
3a
2
)*(3a
2
c
2
–
a
2
b
2
)
=
36a
4
c
2
–
4a
2
(b
2
+
3a
2
)(3c
2
–
b
2
)
=
36a
4
c
2
–
4a
2
(3b
2
c
2
–
b
4
+
9a
2
c
2
–
3a
2
b
2
)
=
4a
2
b
2
(b
2
+
3a
2
–
3c
2
)
=
16a
2
b
4
,由求根公式可得x
=
[6a
2
c
±
√(16a
2
b
4
)]/[2(b
2
+
3a
2
)]
=
(3a
2
c
±
2ab
2
)/(b
2
+
3a
2
)
;
设点A(x
1
,y
1
),点B(x
2
,y
2
),由已知向量AF
=
2BF,所以0
<
x
1
<
c
<
x
2
<
a,所以x
1
=
(3a
2
c
–
2ab
2
)/(b
2
+
3a
2
),x
2
=
(3a
2
c
+
2ab
2
)/(b
2
+
3a
2
)
;
而且|AF|
=
2|BF|,可得c
–
x
1
=
2(x
2
–
c),所以x
1
+
2x
2
=
3c,代入可得[(3a
2
c
–
2ab
2
)
+
2(3a
2
c
+
2ab
2
)]/(b
2
+
3a
2
)
=
3c,所以(9a
2
c
+
2ab
2
)/(b
2
+
3a
2
)
=
3c,所以9a
2
c
+
2ab
2
=
3b
2
c
+
9a
2
c,所以2ab
2
=
3b
2
c,所以e
=
c/a
=
2/3,即椭圆的离心率为e
=
2/3
。
(2)联立方程为(b
2
+
3a
2
)x
2
–
6a
2
cx
+
3a
2
c
2
–
a
2
b
2
=
0,根的判别式Δ=
(-6a
2
c)
2
–
4*(b
2
+
3a
2
)*(3a
2
c
2
–
a
2
b
2
)
=
16a
2
b
4
,根据弦长公式可得:弦长|AB|
=
√[(√3)
2
+
1]*
√(16a
2
b
4
)/|(b
2
+
3a
2
)|
=
2*4ab
2
/(b
2
+
3a
2
)
=
8ab
2
/(b
2
+
3a
2
)
=
15/4,所以32ab
2
=
15(b
2
+
3a
2
)
=
15b
2
+
45a
2
,由①可知离心率e
=
c/a
=
2/3,设a
=
3t(t
>
0),那么c
=
2t,所以b
=
√(a
2
–
c
2
)
=
√5t,代入可得32*3t*(5t
2
)
=
15*5t
2
+
45*9t
2
,所以480t
=
75
+
405
=
480,所以t
=
1,代入可得a
=
3以及b
=
√5,所以椭圆C的方程为
x
2
/9
+
y
2
/5
=
1
。
2
/a
2
+
y
2
/b
2
=
1(a
>
b
>
0)的右焦点F(c,0),c
=
√(a
2
–
b
2
),过点F而且倾斜角为60°的直线的方程为:y
=
(x
–
c)tan60°
=
√3(x
–
c),与椭圆方程联立可得:b
2
x
2
+
a
2
[√3(x
–
c)]
2
=
a
2
b
2
,化简可得(b
2
+
3a
2
)x
2
–
6a
2
cx
+
3a
2
c
2
–
a
2
b
2
=
0,根的判别式Δ=
(-6a
2
c)
2
–
4*(b
2
+
3a
2
)*(3a
2
c
2
–
a
2
b
2
)
=
36a
4
c
2
–
4a
2
(b
2
+
3a
2
)(3c
2
–
b
2
)
=
36a
4
c
2
–
4a
2
(3b
2
c
2
–
b
4
+
9a
2
c
2
–
3a
2
b
2
)
=
4a
2
b
2
(b
2
+
3a
2
–
3c
2
)
=
16a
2
b
4
,由求根公式可得x
=
[6a
2
c
±
√(16a
2
b
4
)]/[2(b
2
+
3a
2
)]
=
(3a
2
c
±
2ab
2
)/(b
2
+
3a
2
)
;
设点A(x
1
,y
1
),点B(x
2
,y
2
),由已知向量AF
=
2BF,所以0
<
x
1
<
c
<
x
2
<
a,所以x
1
=
(3a
2
c
–
2ab
2
)/(b
2
+
3a
2
),x
2
=
(3a
2
c
+
2ab
2
)/(b
2
+
3a
2
)
;
而且|AF|
=
2|BF|,可得c
–
x
1
=
2(x
2
–
c),所以x
1
+
2x
2
=
3c,代入可得[(3a
2
c
–
2ab
2
)
+
2(3a
2
c
+
2ab
2
)]/(b
2
+
3a
2
)
=
3c,所以(9a
2
c
+
2ab
2
)/(b
2
+
3a
2
)
=
3c,所以9a
2
c
+
2ab
2
=
3b
2
c
+
9a
2
c,所以2ab
2
=
3b
2
c,所以e
=
c/a
=
2/3,即椭圆的离心率为e
=
2/3
。
(2)联立方程为(b
2
+
3a
2
)x
2
–
6a
2
cx
+
3a
2
c
2
–
a
2
b
2
=
0,根的判别式Δ=
(-6a
2
c)
2
–
4*(b
2
+
3a
2
)*(3a
2
c
2
–
a
2
b
2
)
=
16a
2
b
4
,根据弦长公式可得:弦长|AB|
=
√[(√3)
2
+
1]*
√(16a
2
b
4
)/|(b
2
+
3a
2
)|
=
2*4ab
2
/(b
2
+
3a
2
)
=
8ab
2
/(b
2
+
3a
2
)
=
15/4,所以32ab
2
=
15(b
2
+
3a
2
)
=
15b
2
+
45a
2
,由①可知离心率e
=
c/a
=
2/3,设a
=
3t(t
>
0),那么c
=
2t,所以b
=
√(a
2
–
c
2
)
=
√5t,代入可得32*3t*(5t
2
)
=
15*5t
2
+
45*9t
2
,所以480t
=
75
+
405
=
480,所以t
=
1,代入可得a
=
3以及b
=
√5,所以椭圆C的方程为
x
2
/9
+
y
2
/5
=
1
。
展开全部
去年我还会做的,今年就只能百度了。
1.设A(x1,y1),B(x2,y2),直线L的方程为y=√3(x+c),将直线方程代入椭圆中得到
(b^2+3a^2)x^2+6ca^2+3(ac)^2-(ab)^2=0
△=b^2-4ac=(6ca^2)^2-4(b^2+3a^2)(3(ac)^2-(ab)^2)=4ab^2
则根据公式可以表示出x1,x2=(-3ca^2±2ab^2)/(b^2+3a^2).
再由AF=2FB知A,B的横坐标满足x1-(-c)=2(-c-x2).
即x1+2x2=-3c
将x1,x2代入上式中得3cb^2=2ab^2
得e=2/3
或:1.
l:y=(x-c)√3,①
其中c=√(a^2-b^2),
代入x^2/a^2+y^2/b^2=1,②
整理得(b^2+3a^2)x^2-6a^2*cx+a^2(3c^2-b^2)=0,
△=36a^4*c^2-4(b^2+3a^2)*a^2(3c^2-b^2)
=16a^2*b^4.
由向量AF=2FB得c-x1=2(x2-c),
∴x1+2x2=3c,4ab^2=6b^2*c,
∴c/a=2/3.
2.由弦长公式,|AB|=8ab^2/(b^2+3a^2)=15/4,
由1,b^2=5a^2/9,解得a=3,b^2=5,
∴所求椭圆方程为x^2/9+y^2/5=1.
希望你能看懂电脑上的数学符号。
1.设A(x1,y1),B(x2,y2),直线L的方程为y=√3(x+c),将直线方程代入椭圆中得到
(b^2+3a^2)x^2+6ca^2+3(ac)^2-(ab)^2=0
△=b^2-4ac=(6ca^2)^2-4(b^2+3a^2)(3(ac)^2-(ab)^2)=4ab^2
则根据公式可以表示出x1,x2=(-3ca^2±2ab^2)/(b^2+3a^2).
再由AF=2FB知A,B的横坐标满足x1-(-c)=2(-c-x2).
即x1+2x2=-3c
将x1,x2代入上式中得3cb^2=2ab^2
得e=2/3
或:1.
l:y=(x-c)√3,①
其中c=√(a^2-b^2),
代入x^2/a^2+y^2/b^2=1,②
整理得(b^2+3a^2)x^2-6a^2*cx+a^2(3c^2-b^2)=0,
△=36a^4*c^2-4(b^2+3a^2)*a^2(3c^2-b^2)
=16a^2*b^4.
由向量AF=2FB得c-x1=2(x2-c),
∴x1+2x2=3c,4ab^2=6b^2*c,
∴c/a=2/3.
2.由弦长公式,|AB|=8ab^2/(b^2+3a^2)=15/4,
由1,b^2=5a^2/9,解得a=3,b^2=5,
∴所求椭圆方程为x^2/9+y^2/5=1.
希望你能看懂电脑上的数学符号。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询