求数学大神17题
1个回答
展开全部
f(x)=[cosxcos(π/3)-sinxsin(π/3)]² - [sinxcos(π/6)+cosxsin(π/6)]²
=[(1/2)cosx - (√3/2)sinx]² - [(√3/2)sinx + (1/2)cosx]²
=(1/4)cos²x - (√3/2)cosxsinx + (3/4)sin²x - (3/4)sin²x - (√3/2)sinxcosx - (1/4)cos²x
=(-√3/2)·2sinxcosx
=(-√3/2)·sin2x
(1)∵f(x)的单调递增区间为:
2kπ + π/2≤2x≤2kπ + 3π/2
∴kπ + π/4≤x≤kπ + 3π/4,(k∈Z)
∵已知区间是[0,π/2]
∴当k=0时,f(x)的单调递增区间是[π/4,π/2]
(2)由已知:g(x)=(-√3/2)·sin[2(x - π/6)]
=(-√3/2)·sin(2x - π/3)
∵0≤x≤π/2
∴0≤2x≤π
则-π/3≤2x - π/3≤2π/3
∴sin(2x - π/3)∈[-√3/2,1]
∴g(x)∈[-√3 /2,3/4]
=[(1/2)cosx - (√3/2)sinx]² - [(√3/2)sinx + (1/2)cosx]²
=(1/4)cos²x - (√3/2)cosxsinx + (3/4)sin²x - (3/4)sin²x - (√3/2)sinxcosx - (1/4)cos²x
=(-√3/2)·2sinxcosx
=(-√3/2)·sin2x
(1)∵f(x)的单调递增区间为:
2kπ + π/2≤2x≤2kπ + 3π/2
∴kπ + π/4≤x≤kπ + 3π/4,(k∈Z)
∵已知区间是[0,π/2]
∴当k=0时,f(x)的单调递增区间是[π/4,π/2]
(2)由已知:g(x)=(-√3/2)·sin[2(x - π/6)]
=(-√3/2)·sin(2x - π/3)
∵0≤x≤π/2
∴0≤2x≤π
则-π/3≤2x - π/3≤2π/3
∴sin(2x - π/3)∈[-√3/2,1]
∴g(x)∈[-√3 /2,3/4]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询