函数y=x^2+1/x^4的最小值
2个回答
展开全部
1.若x>0,则2y
=
8x^2
+
2/x
=
8x^2
+
1/x
+1/x
≥
3(8x^2×1/x×1/x)^1/3
即:(a+b+c)/3≥3次根号下a×b×c,三个正数的均值定理
得2y≥3×2,即y≥3
即当x>0时y有最小值为3.
2.若x<0,则y=4x^2+1/x没有最小值.
=
8x^2
+
2/x
=
8x^2
+
1/x
+1/x
≥
3(8x^2×1/x×1/x)^1/3
即:(a+b+c)/3≥3次根号下a×b×c,三个正数的均值定理
得2y≥3×2,即y≥3
即当x>0时y有最小值为3.
2.若x<0,则y=4x^2+1/x没有最小值.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询