y=x+a/x 常数a>0 证明函数单调性

liyanchundzxx
2011-08-24 · TA获得超过1940个赞
知道小有建树答主
回答量:1211
采纳率:0%
帮助的人:599万
展开全部
定义法:常数a>0,先证明x>0时,又分为x>√a与0<x<√a,当x>√a时,y=x+a/x 常数a>0是增 函数,同理可以证明当0<x<√a时,y=x+a/x 常数a>0是减函数;又因为y=x+a/x 常数a>0 是奇函数,在对称区间上具有相同的单调性,所以x<-√a时,y=x+a/x 常数a>0是增 函数,当-√a<x<0时y=x+a/x 常数a>0是减函数;
_freefree_
2011-08-24 · TA获得超过130个赞
知道答主
回答量:59
采纳率:0%
帮助的人:56.4万
展开全部
这是对勾函数,函数在(0,根号a)处单调递减,在(根号a,正无穷)处单调递增。(-根号a,0)处单调递减,(负无穷,-根号a)单调递增。
你要是学了导数,求一次导数,就可以解出单调性改变的点正负根号a,要是没学的话,就按照上面说的区间,用定义就可以简单的整出来了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式