如图,在RT△ABC中,∠ABC=90°,以AB为直径作圆O交AC边于点D,E是边BC的中点,连接DE
展开全部
1.证明:连接OD,BD.OD=OB,则∠ODB=∠OBD.
AB为直径,则∠ADB=90度;又E为BC中点.
故DE=BC/2=BE,∠EDB=∠EBD.
∴∠ODB+∠EDB=∠OBD+∠EBD=90度,得直线DE是圆O的切线.
2.解:OF=CF;BE=CE.
则EF平行OB.故∠DEC=∠ABC=90°,∠DCE=∠EDC=45°.
故∠A=45°,AB=BC;又BD垂直AD,则AD=DC.
OH垂直AD,则AH=DH=OH.所以,OH/CH=OH/(DH+DC)=OH/3OH=1/3.
AB为直径,则∠ADB=90度;又E为BC中点.
故DE=BC/2=BE,∠EDB=∠EBD.
∴∠ODB+∠EDB=∠OBD+∠EBD=90度,得直线DE是圆O的切线.
2.解:OF=CF;BE=CE.
则EF平行OB.故∠DEC=∠ABC=90°,∠DCE=∠EDC=45°.
故∠A=45°,AB=BC;又BD垂直AD,则AD=DC.
OH垂直AD,则AH=DH=OH.所以,OH/CH=OH/(DH+DC)=OH/3OH=1/3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询