初中数学问题: 如果a<b<c,那么1\(a-b)+1\(b-c)+1\(c-a)=?

 我来答
黎哲妍多名
2019-12-28 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:32%
帮助的人:859万
展开全部
全等三角形的定义、性质
(一)全等三角形的定义,表示方法及对应元素的确定
定义:
1.全等形:能够完全重合的两个图形叫做全等形.
2.全等三角形:能够完全重合的两个三角形叫做全等三角形.
表示方法:
△ABC≌△A′B′C′
两个全等三角形重合到一起引出:
“对应”概念:对应顶点:重合的顶点叫对应顶点,如A,A′;B,B′;C,C′.
对应边:重合的边叫对应边,AB,A′B′;BC,B′C′;CA,C′A′.
对应角:重合的角叫对应角,∠A,∠A′;∠B,∠B′;∠C,∠C′.
表示两个三角形全等要求:把表示对应顶点的字母写在对应的位置上.
(二)确定对应元素的规律:
<i>由重合情况或一些元素对应相等
对应顶点
对应边、对应角;如:以对应顶点为顶点的角是对应角,以两个对应顶点为端点的边是对应边.
<ii>由元素特征及联系(边角互称)来确定.
如:两个全等三角形的最大边一定是对应边,最大角一定是对应角.
又如:两对应边的夹角是对应角,对应角的对边是对应边……
另外:公共角、公共边、对顶角等都可帮助确定对应关系.
(三)全等三角形的性质
全等三角形的对应边相等.
全等三角形的对应角相等.
解释:这一性质是由全等三角形的定义得出的由线段相等定义,角相等的定义可知能够重合的两条线段是相等的线段,能够重合的两个角是相等的角,所以可以推出上述性质.
书写范例:
已知:△ABC≌△DEF
可作如下推理:∵△ABC≌△DEF(已知)
∴AB=DE(BC=EF,AC=DF)(全等三角形对应边相等)
∴∠A=∠D(∠B=∠E,∠C=∠F)(全等三角形对应角相等)
2.三角形全等的条件
(一)判定两个三角形全等需要几个条件?
按定义去判定需要将两个三角形重合看能否完全重合,显然不适用,两个三角形全等则对应边相等,对应角相等,共六个相等结论,那么反过来三条边对应相等,三个角对应相等,两个三角形一定全等,因为它们可以完全重合.
探究问题:
如果两个三角形有一部分对应边相等或对应角相等能否判定两个三角形全等呢?如果可以,最少需要几个条件呢?
(二)边边边公理:三边对应相等的两个三角形全等(简写为边边边或SSS)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式