f(x)在a处可导,那么它的"导函数"在a处连续吗?

 我来答
漆来福左娴
2019-12-30 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:29%
帮助的人:996万
展开全部
设y=f(x)是一个单变量函数,
如果y在x=x[0]处存在导数y'=f'(x),则称y在x=x[0]处可导。
如果一个函数在x[0]处可导,那么它一定在x[0]处是连续函数
函数可导定义:(1)若f(x)在x0处连续,则当a趋向于0时,
[f(x+a)-f(x)]/a存在极限(左右极限相等),
则称f(x)在x0处可导.
(2)若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导
斋玉兰植静
2019-10-08 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:1025万
展开全部
选d
因为|f(x)-f(a)|=|f(x)|,|f(x)|在x=a处连续
当x→a时,右端趋于|f(a)|=0,所以f(x)在x=a处连续
|f(x)|在x=a处可导,而且函数取得极小值0,所以|f(x)|在x=a出的导数值为0
|f(x)-f(a)|/|x-a|
=
||f(x)|-|f(a)|/(x-a)|,右端在x→a时趋于|f(x)|在x=a出导数的绝对值
所以x→a时上式左端极限为0
所以x→a时[f(x)-f(a)]/(x-a)趋于0,即f'(a)=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式