已知t是方程x^3-3x+p=0的一个实数根(p为实数):(1)p为何值时,上述方程恰有两个不等实数
展开全部
因为t是方程的一个根,那么原方程可写为
(x-t)(ax²+bx+c)=0的形式,其中a、b、c都是实数
x³-3x+p=0
x³-tx²+tx²-t²x+t²x-3x-t(t²-3)+t³-3t+p=0
x²(x-t)+tx(x-t)+(t²-3)(x-t)+(t³-3t+p)=0
(x-t)(x²+tx+t²-3)+(t³-3t+p)=0
所以
p=3t-t³
(1)方程有两个不等的实数根
因为已经有一根t
那么x²+tx+t²-3=0只有一解,即△=0
所以t²-4t²+12=0
t=±2
所以
p=±2
检验:
当t=2时,p=-2,原方程:x³-3x-2=0
x³-2x²+2x²-4x+x-2=0
x²(x-2)+2x(x-2)+(x-2)=0
(x-2)(x+1)²=0
x=2
或者
x=-1
当t=-2时,p=2,原方程:x³-3x+2=0
x³+2x²-2x²-4x+x+2=0
x²(x+2)-2x(x+2)+(x+2)=0
(x+2)(x-1)²=0
x=-2
或者
x=1
(2).方程仅有一实根时
因为已经有一根t
那么x²+tx+t²-3=0无实数解,即△<0
所以
t²-4t²+12<0
t²>4
t>2
或者
t<-2
所以
t²>4
所以
3-t²<-1
所以
t(3-t²)<-2
或者
t(3-t²)>2
因为
p=3t-t³=t(3-t²)
所以
∣p∣=∣t(3-t²)∣>2
(x-t)(ax²+bx+c)=0的形式,其中a、b、c都是实数
x³-3x+p=0
x³-tx²+tx²-t²x+t²x-3x-t(t²-3)+t³-3t+p=0
x²(x-t)+tx(x-t)+(t²-3)(x-t)+(t³-3t+p)=0
(x-t)(x²+tx+t²-3)+(t³-3t+p)=0
所以
p=3t-t³
(1)方程有两个不等的实数根
因为已经有一根t
那么x²+tx+t²-3=0只有一解,即△=0
所以t²-4t²+12=0
t=±2
所以
p=±2
检验:
当t=2时,p=-2,原方程:x³-3x-2=0
x³-2x²+2x²-4x+x-2=0
x²(x-2)+2x(x-2)+(x-2)=0
(x-2)(x+1)²=0
x=2
或者
x=-1
当t=-2时,p=2,原方程:x³-3x+2=0
x³+2x²-2x²-4x+x+2=0
x²(x+2)-2x(x+2)+(x+2)=0
(x+2)(x-1)²=0
x=-2
或者
x=1
(2).方程仅有一实根时
因为已经有一根t
那么x²+tx+t²-3=0无实数解,即△<0
所以
t²-4t²+12<0
t²>4
t>2
或者
t<-2
所以
t²>4
所以
3-t²<-1
所以
t(3-t²)<-2
或者
t(3-t²)>2
因为
p=3t-t³=t(3-t²)
所以
∣p∣=∣t(3-t²)∣>2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询