怎样学好高数
展开全部
学好高等数学必须做好以下六步,这六个步骤是学好高等数学的重要环节。
一.听课,要注于专心
认真听课,这是个不言而喻的道理。所以就不多谈了,这里只谈谈记笔记的事。要学好高等数学,一定要学会记笔记。记笔记会使听课更专注,也能帮你有效地进行课外的复习巩固。有些同学不会记笔记,只要是老师所讲,言无轻重、话无巨细,统统照记不误,耳、眼、手忙得不亦乐乎,累得还哪里顾得上同步思考,如果是这个样子,倒还不如不记。课堂笔记没必要追求齐全、讲究系统。只要有选择、有重点地记就可以了,特别要记那些有概括性和技巧性的解题方法,常见的、典型的例题。并且要注意解题方法的积累,特别证明题,因为证明题较抽象,常常感觉无从下手。但是课后复习时,一定要对笔记进行适当的整理补充,这就是一本好笔记。如果能再加上自己的心得体会与点评,那就是笔记的极品了。如果预习得好,那么对哪些该记、哪些可不记,也会更有的放矢。
二.复习,要做到精心
在整个学习的过程中,复习是最重要的环节,有专家研究过所谓的“知识遗忘规律”有近快远慢的现象。学得越快越多,忘得也越快越多。所以刚学的东西,一下课就要及时复习,这叫“巩固记忆”;期中考试再复习,这叫“加深记忆”;期末考试系统地总复习,这叫“强化记忆”。我们把“知识遗忘规律”总结为“知识记忆的指数衰减律”。于是得到下面两个公式,第一个公式是,具体地说就是“复习记忆公式”,其中为初始学习量,为时间,正数就是复习记忆系数,为时刻的即时记忆量.那么我们的复习就是在做系数的修正工作,反复的复习可以把系数改变成为一个很小的正数,从而达到最好的记忆效果。在的极端情况下,记忆就会被“锁住”而成为所谓的“永久记忆”。由于我们在复习的同时,或在复习的基础上,还在不间断地学习着新的知识,所以反复的滚动复习所起的效果就是知识的积累。我们可以把这个意思写成第二个公式称为“温故知新公式”或“知识积累公式”。如果你在任何时刻的复习都能够做得如此的精心,那么两年以后的考研复习时,就只要在你的“记忆库”中进行轻松的搜索、回顾就可以了。古代孔圣人曰“学而时习之,不亦说乎!”现代世俗人谓“曲不离口,越唱越灵;拳不离手,越打越精”。
三.作业,要肯下苦心
作业是复习的一个组成部分,不做作业的复习是虚空复习,不复习而做的作业是低效作业。看书、看笔记、做作业,当然需要有先、后的次序,但是适当地交替进行会更有实效。如果说做好预习是提高课堂听课效率的充分条件,那么及时完成好作业就是读好高等数学的必要条件。老师所布置的作业是最低量作业要求,如果完成这些作业后还找不到明显的感觉,就应该适当地加大自己的作业量。作业是为自己作的,抄作业实际上被欺骗的是自己。老师批过的作业一定要认真仔细地看,这是对老师辛勤劳动的尊重,更是纠正错误,以免重犯的绝好方法。由于多数作业本是由助教批阅的,或许有批错的地方,另外还可 能有对 老师在作业本上的批语没全搞明白的地方,必须及 时问 老师。
四 . 答疑,解决问题不过夜学习高等数学过程中,会有各种疑问,思考越深,疑问越多。有疑问是好事,攻克的问题无论大小,积累起来就是“学问”。不思无问,就是瞎混混。到头来且不说一事无成,就是想涉险过关也许没那么侥幸。学习要有愤悱意识,不愤不启、不悱不发,自己发问、自己回答。“冥思苦想”之下的“豁然开朗”,那才真叫是“其乐无穷”。当然这是理想境界,可遇可求而不强求。我们的功课门数很多,而精力很有限,不能只化在高等数学一门功课上。问了自己后,再问同窗学友。互相切磋,集思广益。每个人有不同的亮点,一旦互相发生碰撞,兴许就会产生绚丽的火花,三个“臭皮匠”赛过一个诸葛亮嘛!为学生释疑 解难是 老师的天职,老师安排的答疑值班时间,是你应该充分利用的宝贵资源。只要是教高数的,随便 那个 老师都可以问,答疑时,不要总希望老师把问题的解答向你和盘托出。注意给你以提示,让你自己继续思考的老师绝对是个好老师。如果你认为这样的老师不够热心,那你就错了。这时候反倒需要你要有足够的耐心,认真地按照老师指点,动手预算一下。如果在经过老师点拨后你真的懂了,那当然是最好。否则,没有搞懂就是没有搞懂,不要不好意思多问,不要担心老师会不耐烦。老师一定会给你第二步引导,第三次启发。直到完全弄懂为止。
五 . 课外阅读,看书有选择
工科和经济类学生对高等数学的学习要求还是很基本的,个人认为没必要去博览群书、广采泛撷。认真研读两本三本高数的教学辅导书就非常足够了。( 1 )教材类的书,没有必要多研究。国内各校教材,虽然各有特色,但依据统一的大纲编写,围绕的重点也完全相同。有些名牌大学教改步子特别大,压缩了大纲内的很多基本东西,编入了许多大纲外的东西,例如微分几何的内容、运筹学的原理、还有数值计算的方法。我们认为根本没有必要读这些书。除了你所在学校的指定教材外,别的教材不要去分析比较了;( 2 )教学辅导书要有选择地读,有指导地读。不少高数学习指导书,用了大量的篇幅去讲解所谓的重点、难点,在我看来只是教材简单的重复、罗列;还有一些学习指导书,做了很多所谓知识的图表化、网络化、程序化,有些作者看来编得太简单体现不出他的新意,在我看来编得那么复杂真让人好像感到进入了一个高等数学的迷宫。靠它怎么能学得好高等数学。而学好了本课程,这些简单的“知识图表化、网络化、程序化”完全可以由学生自己动手来编。( 3 )各种五花八门的高等数学复习资料与习题集目前是最受欢迎的。但是当大家拿到这一种书时,要请注意若缺少对典型例题的深入剖析,没有足够数量的例题供揣摩,对学生也无多大益处。有人一开学,买书很积极,一大摞一大摞的买,这些人基础可能特别好,精力可能特别充沛,一本接着一本地读。咱们不要去和他们攀比,也跟着去买很多书。读数学书是得边看边仔细思考的,怎能像看小说那样一本接着一本地连着读。有需要才去买,买了就认真看,不要把它作为收藏品。用不着包什么花花绿绿的封皮,把涂塑的封面都翻烂了,才算真有本事。对于工科和经济类学生学高等数学来说,我看只要能“读破两本书”,基本上也就能“知识满肚皮”了。
六.预习,能充分提高听课效率
做好预习是学好高等数学课程的一个重要环节。预习能充分提高课堂听课效率、良好的预习习惯能够为提高将来的自学能力打下扎实的基础。学生对学习高等数学的感受是:“上课听得懂,作业做不来”。说到底,还是上课没真懂,而其因素之一可能是没有认真预习。对于预习,大家都觉得特别累,既费时时间,又达不到很好的效果(也就是所谓的“事倍功半”)。这是因为大家对预习的要求没掌握好,把预习当作了自学。实际上预习与自学是两个不同概念。下面就具体谈谈高等数学课程的预习要求。首先预习内容不要太多,根据老师的教学进度表,只要把下一次的教学内容预习一下就行了。太多了理解不了,也难于消化。对于较浅显的内容,预习时可以看得细一点,思考得深一点。通过预习能看懂并理解当然是最好,但是一般说来老师的理解会比你更深刻、更全面。你再在课堂里仔细听听老师的分析、老师的理解,他能帮你产生认识上的一个“叠加”或“倍增”甚至是“飞跃”。
一.听课,要注于专心
认真听课,这是个不言而喻的道理。所以就不多谈了,这里只谈谈记笔记的事。要学好高等数学,一定要学会记笔记。记笔记会使听课更专注,也能帮你有效地进行课外的复习巩固。有些同学不会记笔记,只要是老师所讲,言无轻重、话无巨细,统统照记不误,耳、眼、手忙得不亦乐乎,累得还哪里顾得上同步思考,如果是这个样子,倒还不如不记。课堂笔记没必要追求齐全、讲究系统。只要有选择、有重点地记就可以了,特别要记那些有概括性和技巧性的解题方法,常见的、典型的例题。并且要注意解题方法的积累,特别证明题,因为证明题较抽象,常常感觉无从下手。但是课后复习时,一定要对笔记进行适当的整理补充,这就是一本好笔记。如果能再加上自己的心得体会与点评,那就是笔记的极品了。如果预习得好,那么对哪些该记、哪些可不记,也会更有的放矢。
二.复习,要做到精心
在整个学习的过程中,复习是最重要的环节,有专家研究过所谓的“知识遗忘规律”有近快远慢的现象。学得越快越多,忘得也越快越多。所以刚学的东西,一下课就要及时复习,这叫“巩固记忆”;期中考试再复习,这叫“加深记忆”;期末考试系统地总复习,这叫“强化记忆”。我们把“知识遗忘规律”总结为“知识记忆的指数衰减律”。于是得到下面两个公式,第一个公式是,具体地说就是“复习记忆公式”,其中为初始学习量,为时间,正数就是复习记忆系数,为时刻的即时记忆量.那么我们的复习就是在做系数的修正工作,反复的复习可以把系数改变成为一个很小的正数,从而达到最好的记忆效果。在的极端情况下,记忆就会被“锁住”而成为所谓的“永久记忆”。由于我们在复习的同时,或在复习的基础上,还在不间断地学习着新的知识,所以反复的滚动复习所起的效果就是知识的积累。我们可以把这个意思写成第二个公式称为“温故知新公式”或“知识积累公式”。如果你在任何时刻的复习都能够做得如此的精心,那么两年以后的考研复习时,就只要在你的“记忆库”中进行轻松的搜索、回顾就可以了。古代孔圣人曰“学而时习之,不亦说乎!”现代世俗人谓“曲不离口,越唱越灵;拳不离手,越打越精”。
三.作业,要肯下苦心
作业是复习的一个组成部分,不做作业的复习是虚空复习,不复习而做的作业是低效作业。看书、看笔记、做作业,当然需要有先、后的次序,但是适当地交替进行会更有实效。如果说做好预习是提高课堂听课效率的充分条件,那么及时完成好作业就是读好高等数学的必要条件。老师所布置的作业是最低量作业要求,如果完成这些作业后还找不到明显的感觉,就应该适当地加大自己的作业量。作业是为自己作的,抄作业实际上被欺骗的是自己。老师批过的作业一定要认真仔细地看,这是对老师辛勤劳动的尊重,更是纠正错误,以免重犯的绝好方法。由于多数作业本是由助教批阅的,或许有批错的地方,另外还可 能有对 老师在作业本上的批语没全搞明白的地方,必须及 时问 老师。
四 . 答疑,解决问题不过夜学习高等数学过程中,会有各种疑问,思考越深,疑问越多。有疑问是好事,攻克的问题无论大小,积累起来就是“学问”。不思无问,就是瞎混混。到头来且不说一事无成,就是想涉险过关也许没那么侥幸。学习要有愤悱意识,不愤不启、不悱不发,自己发问、自己回答。“冥思苦想”之下的“豁然开朗”,那才真叫是“其乐无穷”。当然这是理想境界,可遇可求而不强求。我们的功课门数很多,而精力很有限,不能只化在高等数学一门功课上。问了自己后,再问同窗学友。互相切磋,集思广益。每个人有不同的亮点,一旦互相发生碰撞,兴许就会产生绚丽的火花,三个“臭皮匠”赛过一个诸葛亮嘛!为学生释疑 解难是 老师的天职,老师安排的答疑值班时间,是你应该充分利用的宝贵资源。只要是教高数的,随便 那个 老师都可以问,答疑时,不要总希望老师把问题的解答向你和盘托出。注意给你以提示,让你自己继续思考的老师绝对是个好老师。如果你认为这样的老师不够热心,那你就错了。这时候反倒需要你要有足够的耐心,认真地按照老师指点,动手预算一下。如果在经过老师点拨后你真的懂了,那当然是最好。否则,没有搞懂就是没有搞懂,不要不好意思多问,不要担心老师会不耐烦。老师一定会给你第二步引导,第三次启发。直到完全弄懂为止。
五 . 课外阅读,看书有选择
工科和经济类学生对高等数学的学习要求还是很基本的,个人认为没必要去博览群书、广采泛撷。认真研读两本三本高数的教学辅导书就非常足够了。( 1 )教材类的书,没有必要多研究。国内各校教材,虽然各有特色,但依据统一的大纲编写,围绕的重点也完全相同。有些名牌大学教改步子特别大,压缩了大纲内的很多基本东西,编入了许多大纲外的东西,例如微分几何的内容、运筹学的原理、还有数值计算的方法。我们认为根本没有必要读这些书。除了你所在学校的指定教材外,别的教材不要去分析比较了;( 2 )教学辅导书要有选择地读,有指导地读。不少高数学习指导书,用了大量的篇幅去讲解所谓的重点、难点,在我看来只是教材简单的重复、罗列;还有一些学习指导书,做了很多所谓知识的图表化、网络化、程序化,有些作者看来编得太简单体现不出他的新意,在我看来编得那么复杂真让人好像感到进入了一个高等数学的迷宫。靠它怎么能学得好高等数学。而学好了本课程,这些简单的“知识图表化、网络化、程序化”完全可以由学生自己动手来编。( 3 )各种五花八门的高等数学复习资料与习题集目前是最受欢迎的。但是当大家拿到这一种书时,要请注意若缺少对典型例题的深入剖析,没有足够数量的例题供揣摩,对学生也无多大益处。有人一开学,买书很积极,一大摞一大摞的买,这些人基础可能特别好,精力可能特别充沛,一本接着一本地读。咱们不要去和他们攀比,也跟着去买很多书。读数学书是得边看边仔细思考的,怎能像看小说那样一本接着一本地连着读。有需要才去买,买了就认真看,不要把它作为收藏品。用不着包什么花花绿绿的封皮,把涂塑的封面都翻烂了,才算真有本事。对于工科和经济类学生学高等数学来说,我看只要能“读破两本书”,基本上也就能“知识满肚皮”了。
六.预习,能充分提高听课效率
做好预习是学好高等数学课程的一个重要环节。预习能充分提高课堂听课效率、良好的预习习惯能够为提高将来的自学能力打下扎实的基础。学生对学习高等数学的感受是:“上课听得懂,作业做不来”。说到底,还是上课没真懂,而其因素之一可能是没有认真预习。对于预习,大家都觉得特别累,既费时时间,又达不到很好的效果(也就是所谓的“事倍功半”)。这是因为大家对预习的要求没掌握好,把预习当作了自学。实际上预习与自学是两个不同概念。下面就具体谈谈高等数学课程的预习要求。首先预习内容不要太多,根据老师的教学进度表,只要把下一次的教学内容预习一下就行了。太多了理解不了,也难于消化。对于较浅显的内容,预习时可以看得细一点,思考得深一点。通过预习能看懂并理解当然是最好,但是一般说来老师的理解会比你更深刻、更全面。你再在课堂里仔细听听老师的分析、老师的理解,他能帮你产生认识上的一个“叠加”或“倍增”甚至是“飞跃”。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询