设函数f(x)=x^2-alnx与g(x)=(1/a)x-√x的图像分别交直线x=1于点A、B,且曲线y=f(x)在点A处的切线与曲线

设函数f(x)=x^2-alnx与g(x)=(1/a)x-√x的图像分别交直线x=1于点A、B,且曲线y=f(x)在点A处的切线与曲线y=g(x)在点B处的切线平行。1.... 设函数f(x)=x^2-alnx与g(x)=(1/a)x-√x的图像分别交直线x=1于点A、B,且曲线y=f(x)在点A处的切线与曲线y=g(x)在点B处的切线平行。
1. 求函数f(x),g(x)的表达式
2. 当a>1时,求函数h(x)=f(x)-g(x)的最小值。
3. 当a=1/2时,不等式f(x)≥m*g(x)在x∈[1/4,1/2]上恒成立,求实数m的取值范围。
展开
hhgsjcs
2011-08-25 · TA获得超过4766个赞
知道大有可为答主
回答量:2176
采纳率:0%
帮助的人:1953万
展开全部
1、f‘(x)=2x-a/x,g’(x)=1/a-1/(2√x),切线平行f’(x)=g‘(x),则:2-a=1/a-1/2,得:a=1/2或a=2,
f(x)=x^2-(lnx)/2或f(x)=x²-2lnx,g(x)=2x-√x或g(x)=x/2-√x;
2、当2x-a/x>0,x²>a/2时,f(x)=x^2-alnx为增函数,当1/a-1/(2√x)>0,x>a²/4时,g(x)=(1/a)x-√x为增函数,则a/2=(a²/4)²,a=2时,h‘(x)=f’(x)-g‘(x)=0,此时函数h(x)=f(x)-g(x)有最小值=3/2;
3、当a=1/2时,f’(x)=2x-1/2x,函数f(x)=x^2-(lnx)/2在x∈[1/4,1/2]是减函数,f(1/4)=1/16+ln2,f(1/2)=1/4+(ln2)/2;g’(x)=2-1/(2√x),函数g(x)=2x-√x在x∈[1/4,1/2]是增函数,f(1/4)=0,f(1/2)=1-√2/2;m≤[1/4+(ln2)/2]/(1-√2/2)=1/2+√2/4+ln2+ln2*√2/2,实数m的取值范围:(-∞,1/2+√2/4+ln2+ln2*√2/2]。
追问
第一问中的1/2好像要舍去,带入计算的话A、B就是同一点了,与题意不符。
追答
是的代入计算为一点,是两曲线的交点,应该舍去。
怪_小_孩_
2011-08-25
知道答主
回答量:11
采纳率:0%
帮助的人:4.5万
展开全部
太难了 没人懂的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式